Skip to main content Accessibility help
×
Home

Double resonance Raman scattering process in 2D materials

  • Rafael N. Gontijo (a1), Geovani C. Resende (a1), Cristiano Fantini (a1) and Bruno R. Carvalho (a2)

Abstract

Raman spectroscopy is a fundamental tool for the characterization of two-dimensional materials. It provides insights into the electronic and vibrational properties of these materials and is particularly rich in features when the incident laser energy approaches the electronic energy transition of the material. Among these features, the double resonance Raman process provides important information on the electron, phonon, and electron–phonon properties. It was on the study of carbon-related materials that the double resonance bands sparkled showing their potential and, since then, have been deeply searched in the study of novel 2D materials. Here, the authors review the double resonance Raman process in 2D materials focusing on graphene and semiconducting MoS2 highlighting the origin of the bands mediated by the two-phonon and phonon–defect processes. The authors discuss the observed properties of the double resonance bands and compare the processes for graphene and MoS2 to find guiding principles for the appearance of double resonance bands. The authors also discuss the new findings of the intervalley scattering process in transition metal dichalcogenides. A brief discussion of the defect-induced bands in both materials is also presented.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: brunorc@fisica.ufrn.br

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1 (2006).
2.Malard, L.M.M., Pimenta, M.A.A., Dresselhaus, G., and Dresselhaus, M.S.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
3.Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).
4.Ribeiro, H.B., Pimenta, M.A., and de Matos, C.J.S.: Raman spectroscopy in black phosphorus. J. Raman Spectrosc. 49, 76 (2018).
5.Reich, S., Ferrari, A.C., Arenal, R., Loiseau, A., Bello, I., and Robertson, J.: Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 71, 205201 (2005).
6.Cai, Q., Scullion, D., Falin, A., Watanabe, K., Taniguchi, T., Chen, Y., Santos, E.J.G., and Li, L.H.: Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 9, 3059 (2017).
7.Attaccalite, C., Wirtz, L., Marini, A., and Rubio, A.: Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible. Sci. Rep. 3, 2698 (2013).
8.Pimenta, M.A., del Corro, E., Carvalho, B.R., Fantini, C., and Malard, L.M.: Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Acc. Chem. Res. 48, 41 (2015).
9.Saito, R., Tatsumi, Y., Huang, S., Ling, X., and Dresselhaus, M.S.: Raman spectroscopy of transition metal dichalcogenides. J. Phys.: Condens. Matter 28, 353002 (2016).
10.Lui, C.H., Ye, Z., Ji, C., Chiu, K-C., Chou, C-T., Andersen, T.I., Means-Shively, C., Anderson, H., Wu, J-M., Kidd, T., Lee, Y-H., and He, R.: Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).
11.Sun, L., Yan, J., Zhan, D., Liu, L., Hu, H., Li, H., Tay, B.K., Kuo, J-L.L., Huang, C-C.C., Hewak, D.W., Lee, P.S., and Shen, Z.X.: Spin–orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111, 126801 (2013).
12.Carvalho, B.R., Malard, L.M., Alves, J.M., Fantini, C., and Pimenta, M.A.: Symmetry–dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).
13.del Corro, E., Botello-Méndez, A., Gillet, Y., Elias, A.L., Terrones, H., Feng, S., Fantini, C., Rhodes, D., Pradhan, N., Balicas, L., Gonze, X., Charlier, J-C., Terrones, M., and Pimenta, M.A.: Atypical exciton–phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16, 2363 (2016).
14.Soubelet, P., Bruchhausen, A.E., Fainstein, A., Nogajewski, K., and Faugeras, C.: Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B 93, 155407 (2016).
15.Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695 (2010).
16.Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).
17.Zhang, X., Qiao, X-F., Shi, W., Wu, J-B., Jiang, D-S., and Tan, P-H.: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757 (2015).
18.Molina-Sánchez, A., Hummer, K., and Wirtz, L.: Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 70, 554 (2015).
19.Puretzky, A.A., Liang, L., Li, X., Xiao, K., Wang, K., Mahjouri-Samani, M., Basile, L., Idrobo, J.C., Sumpter, B.G., Meunier, V., and Geohegan, D.B.: Low-frequency Raman fingerprints of two–dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333 (2015).
20.Kim, K., Lee, J.U., Nam, D., and Cheong, H.: Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano 10, 8113 (2016).
21.Du, L., Liao, M., Tang, J., Zhang, Q., Yu, H., Yang, R., Watanabe, K., Taniguchi, T., Shi, D., Zhang, Q., and Zhang, G.: Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Phys. Rev. B 97, 235145 (2018).
22.Bilgin, I., Raeliarijaona, A.S., Lucking, M.C., Hodge, S.C., Mohite, A.D., de Luna Bugallo, A., Terrones, H., and Kar, S.: Resonant Raman and exciton coupling in high-quality single crystals of atomically thin molybdenum diselenide grown by vapor–phase chalcogenization. ACS Nano 12, 740 (2018).
23.Chiu, M-H., Li, M-Y., Zhang, W., Hsu, W-T., Chang, W-H., Terrones, M., Terrones, H., and Li, L-J.: Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649 (2014).
24.Shim, G.W., Yoo, K., Seo, S-B., Shin, J., Jung, D.Y., Kang, I-S., Ahn, C.W., Cho, B.J., and Choi, S-Y.: Large–area single–layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655 (2014).
25.Gong, Y., Lei, S., Ye, G., Li, B., He, Y., Keyshar, K., Zhang, X., Wang, Q., Lou, J., Liu, Z., Vajtai, R., Zhou, W., and Ajayan, P.M.: Two–step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135 (2015).
26.Zhang, K., Zhang, T., Cheng, G., Li, T., Wang, S., Wei, W., Zhou, X., Yu, W., Sun, Y., Wang, P., Zhang, D., Zeng, C., Wang, X., Hu, W., Fan, H.J., Shen, G., Chen, X., Duan, X., Chang, K., and Dai, N.: Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852 (2016).
27.Eliel, G.S.N., Moutinho, M.V.O., Gadelha, A.C., Righi, A., Campos, L.C., Ribeiro, H.B., Chiu, P-W., Watanabe, K., Taniguchi, T., Puech, P., Paillet, M., Michel, T., Venezuela, P., and Pimenta, M.A.: Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).
28.Lin, M-L., Tan, Q-H., Wu, J-B., Chen, X-S., Wang, J-H., Pan, Y-H., Zhang, X., Cong, X., Zhang, J., Ji, W., Hu, P-A., Liu, K-H., and Tan, P-H.: Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770 (2018).
29.Miller, R.C., Kleinman, D.A., and Gossard, A.C.: Observation of doubly resonant LO-phonon Raman scattering with GaAs-AlxGa1–x As quantum wells. Solid State Commun. 60, 213 (1986).
30.Cerdeira, F., Anastassakis, E., Kauschke, W., and Cardona, M.: Stress-induced doubly resonant Raman scattering in GaAs. Phys. Rev. Lett. 57, 3209 (1986).
31.Alexandrou, A., Cardona, M., and Ploog, K.: Doubly and triply resonant raman scattering by LO phonons in GaAs/AlAs superlattices. Phys. Rev. B 38, 2196 (1988).
32.Gubarev, S.I., Ruf, T., and Cardona, M.: Doubly resonant Raman scattering in the semimagnetic semiconductor Cd0.95Mn0.05Te. Phys. Rev. B 43, 1551 (1991).
33.Kupčić, I.: Triple-resonant two-phonon Raman scattering in graphene. J. Raman Spectrosc. 43, 1 (2012).
34.Yoon, D., Son, Y.W., and Cheong, H.: Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 106, 1 (2011).
35.Venezuela, P., Lazzeri, M., and Mauri, F.: Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect–induced and two-phonon bands. Phys. Rev. B 84, 1 (2011).
36.Thomsen, C. and Reich, S.: Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).
37.Grüneis, A., Saito, R., Kimura, T., Cançado, L.G., Pimenta, M.A., Jorio, A.G., Souza Filho, A.G., Dresselhaus, G., and Dresselhaus, M.S.: Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B 65, 1 (2002).
38.Reich, S. and Thomsen, C.: Raman spectroscopy of graphite. Philos. Trans. R. Soc., A 362, 2271 (2004).
39.Maultzsch, J., Reich, S., and Thomsen, C.: Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 70, 155403 (2004).
40.Cançado, L.G., Pimenta, M.A., Neves, B.R.A., Dantas, M.S.S., and Jorio, A.: Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 5 (2004).
41.Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).
42.Mafra, D.L., Samsonidze, G., Malard, L.M., Elias, D.C., Brant, J.C., Plentz, F., Alves, E.S., and Pimenta, M.A.: Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 76, 233407 (2007).
43.Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., and Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).
44.Gołasa, K., Grzeszczyk, M., Korona, K.P., Bożek, R., Binder, J., Szczytko, J., Wysmołek, A., and Babiński, A.: Optical properties of molybdenum disulfide (MoS2). Acta Phys. Pol., A 124, 849 (2013).
45.Berkdemir, A., Gutiérrez, H.R., Botello-Méndez, A.R., Perea-López, N., Elías, A.L., Chia, C-I., Wang, B., Crespi, V.H., López-Urías, F., Charlier, J-C., Terrones, H., and Terrones, M.: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).
46.Mitioglu, A.A., Plochocka, P., Deligeorgis, G., Anghel, S., Kulyuk, L., and Maude, D.K.: Second order resonant Raman scattering in single layer tungsten disulfide (WS2). Phys. Rev. B 89, 245442 (2014).
47.Liu, H-L., Guo, H., Yang, T., Zhang, Z., Kumamoto, Y., Shen, C-C., Hsu, Y-T., Li, L-J., Saito, R., and Kawata, S.: Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering. Phys. Chem. Chem. Phys. 17, 14561 (2015).
48.Guo, H., Yang, T., Yamamoto, M., Zhou, L., Ishikawa, R., Ueno, K., Tsukagoshi, K., Zhang, Z., Dresselhaus, M.S., and Saito, R.: Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015).
49.Shi, W., Lin, M-L., Tan, Q-H., Qiao, X-F., Zhang, J., and Tan, P-H.: Raman and photoluminescence spectra of two–dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 3, 025016 (2016).
50.Carvalho, B.R., Wang, Y., Mignuzzi, S., Roy, D., Terrones, M., Fantini, C., Crespi, V.H., Malard, L.M., and Pimenta, M.A.: Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by doubley-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).
51.Qian, Q., Zhang, Z., and Chen, K.J.: Layer-dependent second-order Raman intensity of MoS2 and WS2: Influence of intervalley scattering. Phys. Rev. B 97, 165409 (2018).
52.Kutrowska-Girzycka, J., Jadczak, J., and Bryja, L.: The study of dispersive ‘b’-mode in monolayer MoS2 in temperature dependent resonant Raman scattering experiments. Solid State Commun. 275, 25 (2018).
53.Sekine, T., Uchinokura, K., Nakashizu, T., Matsuura, E., and Yoshizaki, R.: Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 53, 811 (1984).
54.Stacy, A.M.M. and Hodul, D.T.T.: Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 46, 405 (1985).
55.Sourisseau, C., Cruege, F., Fouassier, M., and Alba, M.: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chem. Phys. 150, 281 (1991).
56.McDevitt, N.T., Zabinski, J.S., Donley, M.S., and Bultman, J.E.: Disorder-induced low-frequency Raman band observed in deposited MoS2 films. Appl. Spectrosc. 48, 733 (1994).
57.Frey, G.L., Tenne, R., Matthews, M.J., Dresselhaus, M.S., and Dresselhaus, G.: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883 (1999).
58.Livneh, T. and Sterer, E.: Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81, 195209 (2010).
59.Lin, Z., Carvalho, B.R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M.A., and Terrones, M.: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016).
60.Hu, Z., Wu, Z., Han, C., He, J., Ni, Z., and Chen, W.: Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47, 3100 (2018).
61.Cardona, M. and Merlin, R.: Light Scattering in Solids I., Vol. 8 (Springer, Berlin, Heidelberg, 1983).
62.Mignuzzi, S., Pollard, A.J., Bonini, N., Brennan, B., Gilmore, I.S., Pimenta, M.A., Richards, D., and Roy, D.: Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).
63.Liu, H.L., Siregar, S., Hasdeo, E.H., Kumamoto, Y., Shen, C.C., Cheng, C.C., Li, L.J., Saito, R., and Kawata, S.: Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon 81, 807 (2015).
64.Malard, L.M., Mafra, D.L., Guimarães, M.H.D., Mazzoni, M.S.C., and Jorio, A.: Group theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2008).
65.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
66.Reich, S., Maultzsch, J., Thomsen, C., and Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 1 (2002).
67.Wehling, T.O., Black-Schaffer, A.M., and Balatsky, A.V.: Dirac materials. Adv. Phys. 63, 1 (2014).
68.Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
69.Mak, K.F., Ju, L., Wang, F., and Heinz, T.F.: Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341 (2012).
70.Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).
71.Martins Ferreira, E.H., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A., and Jorio, A.: Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 82, 125429 (2010).
72.Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., and Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925 (2012).
73.Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., and Robertson, J.: Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 1 (2004).
74.May, P., Lazzeri, M., Venezuela, P., Herziger, F., Callsen, G., Reparaz, J.S., Hoffmann, A., Mauri, F., and Maultzsch, J.: Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Phys. Rev. B 87, 075402 (2013).
75.Basko, D.M., Piscanec, S., and Ferrari, A.C.: Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).
76.Bernard, S., Whiteway, E., Yu, V., Austing, D.G., and Hilke, M.: Experimental phonon band structure of graphene using C12 and C13 isotopes. Phys. Rev. B 86, 085409 (2011).
77.Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
78.Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
79.Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C-Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).
80.Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V.H., Terrones, H., and Terrones, M.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447 (2013).
81.Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P-H., and Eda, G.: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791 (2013).
82.Hill, H.M., Rigosi, A.F., Roquelet, C., Chernikov, A., Berkelbach, T.C., Reichman, D.R., Hybertsen, M.S., Brus, L.E., and Heinz, T.F.: Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992 (2015).
83.Frisenda, R., Niu, Y., Gant, P., Molina-Mendoza, A.J., Schmidt, R., Bratschitsch, R., Liu, J., Fu, L., Dumcenco, D., Kis, A., De Lara, D.P., and Castellanos-Gomez, A.: Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D: Appl. Phys. 50, 074002 (2017).
84.Mak, K.F. and Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216 (2016).
85.Mak, K.F., McGill, K.L., Park, J., and McEuen, P.L.: Valleytronics. The Valley Hall effect in MoS2 transistors. Science 344, 1489 (2014).
86.Mai, C., Barrette, A., Yu, Y., Semenov, Y.G., Kim, K.W., Cao, L., and Gundogdu, K.: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202 (2014).
87.Baugher, B.W.H., Churchill, H.O.H., Yang, Y., and Jarillo-Herrero, P.: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262 (2014).
88.Novoselov, K.S., Mishchenko, A., Carvalho, A., and Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
89.Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).
90.Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., Pizzi, G., and Marzari, N.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).
91.Gusakova, J., Wang, X., Shiau, L.L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V., Gusakov, V., and Tay, B.K.: Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ–2e method). Phys. Status Solidi 214, 1700218 (2017).
92.Wilson, J.A.A. and Yoffe, A.D.D.: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).
93.Qiu, D.Y., da Jornada, F.H., and Louie, S.G.: Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).
94.Zibouche, N., Kuc, A., Musfeldt, J., and Heine, T.: Transition-metal dichalcogenides for spintronic applications. Ann. Phys. 526, 395 (2014).
95.Gaur, A.P.S., Sahoo, S., Scott, J.F., and Katiyar, R.S.: Electron–phonon interaction and double–resonance Raman studies in monolayer WS2. J. Phys. Chem. C 119, 5146 (2015).
96.Chen, J.M. and Wang, C.S.: Second order Raman spectrum of MoS2. Solid State Commun. 14, 857 (1974).
97.Livneh, T. and Spanier, J.E.: A comprehensive multiphonon spectral analysis in MoS2. 2D Mater. 2, 035003 (2015).
98.Gillet, Y., Kontur, S., Giantomassi, M., Draxl, C., and Gonze, X.: Ab initio approach to second-order resonant Raman scattering including exciton–phonon interaction. Sci. Rep. 7, 7344 (2017).
99.Wang, G., Glazov, M., Robert, C., Amand, T., Marie, X., and Urbaszek, B.: Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 115, 1 (2015).
100.Liu, H-L., Yang, T., Tatsumi, Y., Zhang, Y., Dong, B., Guo, H., Zhang, Z., Kumamoto, Y., Li, M-Y., Li, L-J., Saito, R., and Kawata, S.: Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Sci. Rep. 8, 11398 (2018).
101.Gołasa, K., Grzeszczyk, M., Leszczyński, P., Faugeras, C., Nicolet, A.A.L., Wysmołek, A., Potemski, M., and Babiński, A.: Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 104, 092106 (2014).
102.Zeng, H., Dai, J., Yao, W., Xiao, D., and Cui, X.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012).
103.Mak, K.F., He, K., Shan, J., and Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494 (2012).
104.Kioseoglou, G., Hanbicki, A.T., Currie, M., Friedman, A.L., and Jonker, B.T.: Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 6, 25041 (2016).
105.Dey, P., Paul, J., Wang, Z., Stevens, C.E., Liu, C., Romero, A.H., Shan, J., Hilton, D.J., and Karaiskaj, D.: Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron–phonon interactions. Phys. Rev. Lett. 116, 127402 (2016).
106.Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., and Idrobo, J.C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615 (2013).
107.Wu, Z., Luo, Z., Shen, Y., Zhao, W., Wang, W., Nan, H., Guo, X., Sun, L., Wang, X., You, Y., and Ni, Z.: Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 9, 3622 (2016).
108.Parkin, W.M., Balan, A., Liang, L., Das, P.M., Lamparski, M., Naylor, C.H., Rodríguez-Manzo, J.A., Johnson, A.T.C., Meunier, V., and Drndić, M.: Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10, 4134 (2016).
109.Wu, Z., Zhao, W., Jiang, J., Zheng, T., You, Y., Lu, J., and Ni, Z.: Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 121, 12294 (2017).
110.Shi, W., Zhang, X., Li, X-L., Qiao, X-F., Wu, J-B., Zhang, J., and Tan, P-H.: Phonon confinement effect in two-dimensional nanocrystallites of monolayer MoS2 to probe phonon dispersion trends away from brillouin-zone center. Chin. Phys. Lett. 33, 057801 (2016).
111.Komsa, H-P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., and Krasheninnikov, A.V.: Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).
112.Lu, J., Carvalho, A., Chan, X.K., Liu, H., Liu, B., Tok, E.S., Loh, K.P., Castro Neto, A.H., and Sow, C.H.: Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524 (2015).
113.Fang, H., Tosun, M., Seol, G., Chang, T.C., Takei, K., Guo, J., and Javey, A.: Degenerate n-doping of few–layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991 (2013).
114.Dolui, K., Rungger, I., Das Pemmaraju, C., and Sanvito, S.: Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 88, 1 (2013).
115.Saigal, N., Wielert, I., Čapeta, D., Vujičić, N., V Senkovskiy, B., Hell, M., Kralj, M., and Grüneis, A.: Effect of lithium doping on the optical properties of monolayer MoS2. Appl. Phys. Lett. 112, 121902 (2018).
116.Asari, E., Kamioka, I., Nakamura, K.G., Kawabe, T., Lewis, W.A., and Kitajima, M.: Lattice disordering in graphite under rare-gas ion irradiation studied by Raman spectroscopy. Phys. Rev. B 49, 1011 (1994).
117.Richter, H., Wang, Z.P., and Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981).
118.Campbell, I.H. and Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).
119.Ishioka, K., Nakamura, K.G., and Kitajima, M.: Phonon confinement in GaAs by defect formation studied by real-time Raman measurements. Phys. Rev. B 52, 2539 (1995).
120.Lee, C., Jeong, B.G., Yun, S.J., Lee, Y.H., Lee, S.M., and Jeong, M.S.: Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering. ACS Nano 12, 9982 (2018).
121.McCreary, A., Simpson, J.R., Wang, Y., Rhodes, D., Fujisawa, K., Balicas, L., Dubey, M., Crespi, V.H., Terrones, M., and Hight Walker, A.R.: Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 17, 5897 (2017).
122.Wolverson, D., Crampin, S., Kazemi, A.S., Ilie, A., and Bending, S.J.: Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 8, 11154 (2014).
123.Wang, X., Mao, N., Luo, W., Kitadai, H., and Ling, X.: Anomalous phonon modes in black phosphorus revealed by resonant Raman scattering. J. Phys. Chem. Lett. 9, 2830 (2018).
124.Favron, A., Goudreault, F.A., Gosselin, V., Groulx, J., Côté, M., Leonelli, R., Germain, J.F., Phaneuf-L’Heureux, A.L., Francoeur, S., and Martel, R.: Second-order Raman scattering in exfoliated black phosphorus. Nano Lett. 18, 1018 (2018).

Keywords

Double resonance Raman scattering process in 2D materials

  • Rafael N. Gontijo (a1), Geovani C. Resende (a1), Cristiano Fantini (a1) and Bruno R. Carvalho (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed