Skip to main content Accessibility help
×
Home

Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review

  • Tanmoy Maiti (a1), Mandvi Saxena (a1) and Pinku Roy (a1)

Abstract

Recently, double perovskite-based oxide materials have been proposed for thermoelectric (TE) applications due to their environment-friendly nature, high-temperature stability, better oxidation resistance, and lower processing cost compared to conventional chalcogenides and intermetallics. In this review article, we have comprehensively summarized our recent research studies on Sr2B′B″O6-based double perovskites for high-temperature TE power generation. We have shown that decoupling of phonon-glass and electron-crystal behavior is possible in oxides by reducing thermal conductivity due to induced dipolar glassy state as a result of relaxor ferroelectricity. We have also introduced metal-like electrical conductivity (∼105 S/m) in these ceramics that are inherently insulator in nature. Moreover, we have observed interesting behavior of temperature-driven p–n type conduction switching assisted colossal change in thermopower in some of these oxides, hitherto, obtained only in chalcogenides. The charge transport mechanism in these complex oxides has been analyzed by small polaron hopping conduction model in conjugation with defect chemistry.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail: tmaiti@iitk.ac.in

References

Hide All
1.He, J., Kanatzidis, M.G., and Dravid, V.P.: High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 16, 166 (2013).
2.Ovik, R., Long, B., Barma, M., Riaz, M., Sabri, M., Said, S., and Saidur, R.: A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable Sustainable Energy Rev. 64, 635 (2016).
3.Ullah, K., Saidur, R., Ping, H., Akikur, R., and Shuvo, N.: A review of solar thermal refrigeration and cooling methods. Renewable Sustainable Energy Rev. 24, 499 (2013).
4.Tie, S.F. and Tan, C.W.: A review of energy sources and energy management system in electric vehicles. Renewable Sustainable Energy Rev. 20, 82 (2013).
5.Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C., and Weller, H.: Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles advanced. Funct. Mater. 19, 3476 (2009).
6.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., and Vashaee, D.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
7.Caillat, T., Fleurial, J-P., and Borshchevsky, A.: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58, 1119 (1997).
8.Kadel, K., Kumari, L., Li, W., Huang, J.Y., and Provencio, P.P.: Synthesis and thermoelectric properties of Bi2Se3 nanostructures. Nanoscale Res. Lett. 6, 1 (2011).
9.Brebrick, R. and Strauss, A.: Anomalous thermoelectric power as evidence for two-valence bands in SnTe. Phys. Rev. 131, 104 (1963).
10.Takeuchi, T., Kondo, T., Takami, T., Takahashi, H., Ikuta, H., Mizutani, U., Soda, K., Funahashi, R., Shikano, M., and Mikami, M.: Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Phys. Rev. B 69, 125410 (2004).
11.Van Nong, N., Pryds, N., Linderoth, S., and Ohtaki, M.: Enhancement of the thermoelectric performance of p‐type layered oxide Ca3Co4O9 + δ through heavy doping and metallic nanoinclusions. Adv. Mater. 23, 2484 (2011).
12.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
13.Aguirre, M.H., Logvinovich, D., Bocher, L., Robert, R., Ebbinghaus, S.G., and Weidenkaff, A.: High-temperature thermoelectric properties of Sr2RuYO6 and Sr2RuErO6 double perovskites influenced by structure and microstructure. Acta Mater. 57, 108 (2009).
14.Kawano, T., Takahashi, J., Yamada, T., and Yamane, H.: Preparation, crystal structure and high-temperature thermoelectric properties of double perovskite-type rare-earth cobalt ruthenium oxides. J. Ceram. Soc. Jpn. 115, 792 (2007).
15.Smith, A.E., Sleight, A.W., and Subramanian, M.: Electrical and magnetic properties of new rhodium perovskites: La2MRhO6, M = Cr, Fe, Cu. Mater. Res. Bull. 45, 460 (2010).
16.Sugahara, T. and Ohtaki, M.: Structural and semiconductor-to-metal transitions of double-perovskite cobalt oxide Sr2−xLaxCoTiO6−δ with enhanced thermoelectric capability. Appl. Phys. Lett. 99, 062107 (2011).
17.Sugahara, T., Van Nong, N., and Ohtaki, M.: Structure and thermoelectric properties of Ca2−xSrx FeMoO6 (0 ≤ x ≤ 0.3) double-perovskite oxides. Mater. Chem. Phys. 133, 630 (2012).
18.Sugahara, T., Ohtaki, M., and Suganuma, K.: La doped effects on structure and thermoelectric properties of Sr2MnMoO6 double-perovskite oxides. J. Asian Ceram. Soc. 1, 282 (2013).
19.Roy, P., Waghmare, V., and Maiti, T.: Environmentally friendly BaxSr2−xTiFeO6 double perovskite with enhanced thermopower for high temperature thermoelectric power generation. RSC Adv. 6, 54636 (2016).
20.Roy, P., Waghmare, V., Tanwar, K., and Maiti, T.: Large change in thermopower with temperature driven p–n type conduction switching in environment friendly BaxSr2−xTi0.8Fe0.8Nb0.4O6 double perovskites. Phys. Chem. Chem. Phys. 19, 5818 (2017).
21.Roy, P. and Maiti, T.: Colossal change in thermopower with temperature-driven p–n-type conduction switching in LaxSr2−xTiFeO6 double perovskites. J. Phys. D: Appl. Phys. 51, 065104 (2018).
22.Saxena, M., Roy, P., Acharya, M., Bose, I., Tanwar, K., and Maiti, T.: Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2−xTiCoO6 double perovskites. Appl. Phys. Lett. 109, 263903 (2016).
23.Acharya, M. and Maiti, T.: Effect of bismuth doping on thermoelectric properties of Sr2TiCoO6. Ferroelectrics 532 (2018). (in press).
24.Saxena, M., Tanwar, K., and Maiti, T.: Environmental friendly Sr2TiMoO6 double perovskite for high temperature thermoelectric applications. Scr. Mater. 130, 205 (2017).
25.Saxena, M. and Maiti, T.: Metal-like electrical conductivity in LaxSr2−x TiMoO6 oxides for high temperature thermoelectric power generation. Dalton Trans. 46, 5872 (2017).
26.Saxena, M. and Maiti, T.: Effect of Ba-doping on high temperature thermoelectric properties of Sr2TiMoO6 double perovskites. J. Alloys Compd. 710, 472 (2017).
27.Saxena, M. and Maiti, T.: Evaluation of Ba doped Sr2TiFe0.5Mo0.5O6 double perovskites for high temperature thermoelectric power generation. Scr. Mater. 155, 85 (2018).
28.Saxena, M. and Maiti, T.: Compositional modification of Sr2TiCoO6 double perovskites by Mo and La for high temperature thermoelectric applications. Ceram. Int. 44, 2732 (2018).
29.Tanwar, K., Saxena, M., and Maiti, T.: Enhancement of thermoelectric power factor of Sr2CoMoO6 double perovskite by annealing in reducing atmosphere. J. Appl. Phys. 122, 164902 (2017).
30.Roy, P., Pal, V., and Maiti, T.: Effect of spark plasma sintering (SPS) on the thermoelectric properties of SrTiO3: 15 at.% Nb. Ceram. Int. 43, 12809 (2017).
31.Ohta, S., Nomura, T., Ohta, H., and Koumoto, K.: High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).
32.Funahashi, R., Kosuga, A., Miyasou, N., Takeuchi, E., Urata, S., Lee, K., Ohta, H., and Koumoto, K.: Thermoelectric properties of CaMnO3 system. In Thermoelectrics, 2007. ICT 2007. 26th International Conference (IEEE, Jeju Island, South Korea, 2007); p. 124.
33.Daniels, L., Ling, S., Savvin, S., Pitcher, M., Dyer, M., Claridge, J., Slater, B., Corà, F., Alaria, J., and Rosseinsky, M.: A and B site doping of a phonon-glass perovskite oxide thermoelectric. J. Mater. Chem. A 6, 1564015652 (2018).
34.Nong, N., Liu, C-J., and Ohtaki, M.: High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9 + δ. J. Alloys Compd. 509, 977 (2011).
35.Zhang, F., Lu, Q., and Zhang, J.: Synthesis and high temperature thermoelectric properties of BaxAgyCa3−xyCo4O9 compounds. J. Alloys Compd. 484, 550 (2009).
36.Sarma, D., Sampathkumaran, E., Ray, S., Nagarajan, R., Majumdar, S., Kumar, A., Nalini, G., and Row, T.G.: Magnetoresistance in ordered and disordered double perovskite oxide, Sr2 FeMoO6. Solid State Commun. 114, 465 (2000).
37.Kumar, S., Giovannetti, G., van den Brink, J., and Picozzi, S.: Theoretical prediction of multiferroicity in double perovskite Y2NiMnO6. Phys. Rev. B 82, 134429 (2010).
38.Vasala, S. and Karppinen, M.: A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 43, 1 (2015).
39.Demazeau, G., Siberchicot, B., Matar, S., Gayet, C., and Largeteau, A.: A new ferromagnetic oxide La2MnIrO6: Synthesis, characterization, and calculation of its electronic structure. J. Appl. Phys. 75, 4617 (1994).
40.Meetei, O.N., Erten, O., Mukherjee, A., Randeria, M., Trivedi, N., and Woodward, P.: Theory of half-metallic double perovskites. I. Double exchange mechanism. Phys. Rev. B 87, 165104 (2013).
41.Roy, P., Bose, I., and Maiti, T.: Synthesis and characterization of Sr2TiMO6 (M = Fe, Co) double perovskites for high temperature thermoelectric applications. Integr. Ferroelectr. 174, 34 (2016).
42.Howard, C.J., Kennedy, B.J., and Woodward, P.M.: Ordered double perovskites—A group-theoretical analysis. Acta Crystallogr., Sect. B: Struct. Sci. 59, 463 (2003).
43.Anderson, M.T., Greenwood, K.B., Taylor, G.A., and Poeppelmeier, K.R.: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 (1993).
44.King, G. and Woodward, P.M.: Cation ordering in perovskites. J. Mater. Chem. 20, 5785 (2010).
45.Goldschmidt, V.: The laws of crystal chemistry. Naturwissenschaften 14, 477 (1926).
46.Rodríguez-Carvajal, J.: An Introduction to the Program FullProf 2000 (Laboratoire Léon Brillouin, CEA-CNRS: Saclay, France, 2001).
47.Maji, B.K., Jena, H., Asuvathraman, R., and Kutty, K.G.: Electrical conductivity and thermal expansion behavior of MMoO4 (M = Ca, Sr, and Ba). J. Alloys Compd. 640, 475 (2015).
48.Logvinovich, D., Aguiar, R., Robert, R., Trottmann, M., Ebbinghaus, S., Reller, A., and Weidenkaff, A.: Synthesis, Mo-valence state, thermal stability and thermoelectric properties of SrMoO3−xNx (x > 1) oxynitride perovskites. J. Solid State Chem. 180, 2649 (2007).
49.Slack, G.A. and Rowe, M.: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Florida, 1995); p. 407.
50.Wang, N., He, H., Li, X., Han, L., and Zhang, C.: Enhanced thermoelectric properties of Nb-doped SrTiO3 polycrystalline ceramic by titanate nanotube addition. J. Alloys Compd. 506, 293 (2010).
51.Sugahara, T., Ohtaki, M., and Souma, T.: Thermoelectric properties of double-perovskite oxide Sr2−xMxFeMoO6 (M = Ba, La). J. Ceram. Soc. Jpn. 116, 1278 (2008).
52.Ackerman, D., Moy, D., Potter, R., Anderson, A., and Lawless, W.: Glassy behavior of crystalline solids at low temperatures. Phys. Rev. B 23, 3886 (1981).
53.Huang, C.: Some experimental aspects of spin glasses: A review. J. Magn. Magn. Mater. 51, 1 (1985).
54.De Yoreo, J., Pohl, R., and Burns, G.: Low-temperature thermal properties of ferroelectrics. Phys. Rev. B 32, 5780 (1985).
55.Uchino, K. and Nomura, S.: Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44, 55 (1982).
56.Smolenskii, G. and Agranovskaya, A.: Dielectric polarization and losses of some complex compounds. Zh. Tekh. Fiz. 28, 13801382 (1958).
57.Viehland, D., Jang, S., Cross, L.E., and Wuttig, M.: Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916 (1990).
58.Viehland, D., Li, J., Jang, S., Cross, L.E., and Wuttig, M.: Dipolar-glass model for lead magnesium niobate. Phys. Rev. B 43, 8316 (1991).
59.Burns, G. and Dacol, F.: Ferroelectrics with a glassy polarization phase. Ferroelectrics 104, 25 (1990).
60.Burns, G. and Dacol, F.: Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3. Solid State Commun. 48, 853 (1983).
61.Bhalla, A., Guo, R., Cross, L., Burns, G., Dacol, F., and Neurgaonkar, R.R.: Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects. Phys. Rev. B 36, 2030 (1987).
62.Shtrikman, S. and Wohlfarth, E.: The theory of the Vogel–Fulcher law of spin glasses. Phys. Lett. A 85, 467 (1981).
63.Pirc, R. and Blinc, R.: Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).
64.Maiti, T., Guo, R., and Bhalla, A.: Structure‐property phase diagram of BaZrxTi1−xO3 system. J. Am. Ceram. Soc. 91, 1769 (2008).
65.Fischer, E., Hässler, W., and Hegenbarth, E.: Glass‐like behaviour in the thermal conductivity of Sr1−xBax(Nb2O6) single crystal. Phys. Status Solidi A 72, K169 (1982).
66.Yuan, X. and Xu, M.: Thermal transport properties of polycrystalline Pb2FeMoO6. Mater. Res. Express 5, 066102 (2018).
67.Nakatsugawa, H., Saito, M., and Okamoto, Y.: High-temperature thermoelectric properties of perovskite-type Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1). J. Electron. Mater. 46, 3262 (2017).
68.Moon, J-W., Masuda, Y., Seo, W-S., and Koumoto, K.: Ca-doped HoCoO3 as p-type oxide thermoelectric material. Mater. Lett. 48, 225 (2001).
69.Daniels, L., Savvin, S., Pitcher, M., Dyer, M., Claridge, J., Ling, S., Slater, B., Corà, F., Alaria, J., and Rosseinsky, M.: Phonon-glass electron-crystal behaviour by a site disorder in n-type thermoelectric oxides. Energy Environ. Sci. 10, 1917 (2017).
70.Ang, R., Sun, Y., and Song, W.: The magnetic, electrical and thermal transport studies in the layered cobalt oxide Nd1−xSr1+xCoO4 (x = 0.25 and 0.33). J. Phys. D: Appl. Phys. 40, 5206 (2007).
71.Wang, Y., Lee, K.H., Ohta, H., and Koumoto, K.: Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1, 2) ceramics. J. Appl. Phys. 105, 103701 (2009).
72.Wang, Y.F., Lee, K.H., Ohta, H., and Koumoto, K.: Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n = 1, 2) ceramics. Ceram. Int. 34, 849 (2008).
73.Sun, R., Li, D., Li, L., Zhang, J., Wang, Q., and Qin, X.: Preparation and thermoelectric properties of rare-earth-metal-doped SrO(SrTiO3)n oxides. Procedia Eng. 27, 103 (2012).
74.Lee, K.H., Kim, S.W., Ohta, H., and Koumoto, K.: Ruddlesden-popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n = 1, 2). J. Appl. Phys. 100, 063717 (2006).
75.Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).
76.Bernasconi, P., Biaggio, I., Zgonik, M., and Günter, P.: Anisotropy of the electron and hole drift mobility in KNbO3 and BaTiO3. Phys. Rev. Lett. 78, 106 (1997).
77.Cox, P.A.: Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Oxford University Press, New York, New York, 2010).
78.Lee, S., Yang, G., Wilke, R.H., Trolier-McKinstry, S., and Randall, C.A.: Thermopower in highly reduced n-type ferroelectric and related perovskite oxides and the role of heterogeneous nonstoichiometry. Phys. Rev. B 79, 134110 (2009).
79.Yang, K-Y., Fung, K-Z., and Wang, M-C.: X-ray photoelectron spectroscopic and secondary ion mass spectroscopic examinations of metallic-lithium-activated donor doping process on La0.56Li0.33TiO3 surface at room temperature. J. Appl. Phys. 100, 056102-3 (2006).
80.Lekshmi, I.C., Gayen, A., and Hegde, M.: The effect of strain on nonlinear temperature dependence of resistivity in SrMoO3 and SrMoO3−xNx films. Mater. Res. Bull. 40, 93 (2005).
81.Lu, Y. and Clayton, C.: An XPS study of the passive and transpassive behavior of molybdenum in deaerated 0.1 M HCl. Corros. Sci. 29, 927 (1989).
82.Choi, J-G. and Thompson, L.: XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143 (1996).
83.Mott, N.F. and Friedman, L.: Metal–insulator transitions in VO2, Ti2O3, and Ti2−xVxO3. Philos. Mag. 30, 389 (1974).
84.Gorham-Bergeron, E. and Emin, D.: Phonon-assisted hopping due to interaction with both acoustical and optical phonons. Phys. Rev. B 15, 3667 (1977).
85.Tsuda, N., Nasu, K., Fujimori, A., and Siratori, K.: Electronic Conduction in Oxides (Springer Science & Business Media, New York, New York, 2013).
86.Nag, A. and Shubha, V.: Oxide thermoelectric materials: A structure–property relationship. J. Electron. Mater. 43, 962 (2014).
87.Chaikin, P. and Beni, G.: Thermopower in the correlated hopping regime. Phys. Rev. B 13, 647 (1976).
88.Waser, R. and Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007).
89.Chon, U., Jang, H.M., Kim, M., and Chang, C.: Layered perovskites with giant spontaneous polarizations for nonvolatile memories. Phys. Rev. Lett. 89, 087601 (2002).
90.Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J.: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238 (1997).
91.Fergus, J.W.: Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators, B 123, 1169 (2007).
92.Yamashita, T. and Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).
93.Paparazzo, E.: XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3, and Cr2O3. J. Electron Spectrosc. Relat. Phenom. 43, 97 (1987).
94.Lee, H-R., Kim, S-J., Yang, I-S., and Choy, J-H.: Low-dimensional and extended metal—metal bonded networks in transition metal compounds: Ba2Nb5O9, Ba2−xYxNb5O9. J. Solid State Chem. 108, 253 (1994).
95.Carmalt, C.J., Manning, T.D., Parkin, I.P., Peters, E.S., and Hector, A.L.: Formation of a new (1T) trigonal NbS2 polytype via atmospheric pressure chemical vapour deposition. J. Mater. Chem. 14, 290 (2004).
96.Dementjev, A., Ivanova, O., Vasilyev, L., Naumkin, A., Nemirovsky, D., and Shalaev, D.: Altered layer as sensitive initial chemical state indicator. J. Vac. Sci. Technol., A. 12, 423 (1994).
97.Lu, C., Kuang, A., and Huang, G.: X-ray photoelectron spectroscopy study on composition and structure of sol–gel derived PbTiO3 thin films. J. Appl. Phys. 80, 202 (1996).
98.Guin, S.N., Pan, J., Bhowmik, A., Sanyal, D., Waghmare, U.V., and Biswas, K.: Temperature dependent reversible p–n–p type conduction switching with colossal change in thermopower of semiconducting AgCuS. J. Am. Chem. Soc. 136, 12712 (2014).
99.Xiao, C., Qin, X., Zhang, J., An, R., Xu, J., Li, K., Cao, B., Yang, J., Ye, B., and Xie, Y.: High thermoelectric and reversible pnp conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 134, 18460 (2012).
100.Nilges, T., Lange, S., Bawohl, M., Deckwart, J.M., Janssen, M., Wiemhöfer, H-D., Decourt, R., Chevalier, B., Vannahme, J., and Eckert, H.: Reversible switching between p-and n-type conduction in the semiconductor Ag10Te4Br3. Nat. Mater. 8, 101 (2009).
101.Littleton, R. IV, Tritt, T.M., Kolis, J., Ketchum, D., Lowhorn, N.D., and Korzenski, M.: Suppression of the resistivity anomaly and corresponding thermopower behavior in the pentatelluride system by the addition of Sb: Hf1−XZrXTe5−YSbY. Phys. Rev. B 64, 121104 (2001).
102.Osters, O., Bawohl, M., Bobet, J-L., Chevalier, B., Decourt, R., and Nilges, T.: A conceptional approach to materials for resistivity switching and thermoelectrics. Solid State Sci. 13, 944 (2011).

Keywords

Related content

Powered by UNSILO

Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review

  • Tanmoy Maiti (a1), Mandvi Saxena (a1) and Pinku Roy (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.