Skip to main content Accessibility help
×
Home

Doping of semiconductor nanowires

  • Jesper Wallentin (a1) and Magnus T. Borgström (a1)

Abstract

A cornerstone in the successful application of semiconductor nanowire devices is controlled impurity doping. In this review article, we discuss the key results in the field of semiconductor nanowire doping. Considerable development has recently taken place in this field, and half of the references in this review are less than 3 years old. We present a simple model for dopant incorporation during in situ doping of particle-assisted growth of nanowires. The effects of doping on nanowire growth are thoroughly discussed since many investigators have seen much stronger and more complex effects than those observed in thin-film growth. We also give an overview of methods of characterizing doping in nanowires since these in many ways define the boundaries of our current understanding.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jesper.wallentin@ftf.lth.se

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Mårtensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R., and Samuelson, L.: Epitaxial III-V nanowires on silicon. Nano Lett. 4, 1987 (2004).
2.Bakkers, E.P.A.M., Borgström, M.T., and Verheijen, M.A.: Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 32, 117 (2007).
3.Cui, Y. and Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).
4.Thelander, C., Mårtensson, T., Björk, M.T., Ohlsson, B.J., Larsson, M.W., Wallenberg, L.R., and Samuelson, L.: Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052 (2003).
5.Nadj-Perge, S., Frolov, S.M., Bakkers, E.P., and Kouwenhoven, L.P.: Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084 (2010).
6.Haraguchi, K., Katsuyama, T., Hiruma, K., and Ogawa, K.: GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60, 745 (1992).
7.Cui, Y., Duan, X.F., Hu, J.T., and Lieber, C.M.: Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213 (2000).
8.Kempa, T.J., Tian, B.Z., Kim, D.R., Hu, J.S., Zheng, X.L., and Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008).
9.Minot, E.D., Kelkensberg, F., van Kouwen, M., van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., Borgström, M.T., Wunnicke, O., Verheijen, M.A., and Bakkers, E.P.A.M.: Single quantum dot nanowire LEDs. Nano Lett. 7, 367 (2007).
10.Björk, M.T., Knoch, J., Schmid, H., Riel, H., and Riess, W.: Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008).
11.Stringfellow, G.B.: The role of impurities in III/V semiconductors grown by organometallic vapor-phase epitaxy. J. Cryst. Growth 75, 91 (1986).
12.Caroff, P., Bolinsson, J., and Johansson, J.: Crystal phases in III–V nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. PP, 18 (2010).
13.Xu, L.A., Su, Y., Chen, Y.Q., Xiao, H.H., Zhu, L.A., Zhou, Q.T., and Li, S.: Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. J. Phys. Chem. B 110, 6637 (2006).
14.Algra, R.E., Verheijen, M.A., Borgström, M.T., Feiner, L-F., Immink, G., van Enckevort, W.J.P., Vlieg, E., and Bakkers, E.P.A.M.: Twinning superlattices in indium phosphide nanowires. Nature 456, 369 (2008).
15.Seoane, N., Martinez, A., Brown, A.R., Barker, J.R., and Asenov, A.: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: A fully 3-D NEGF simulation study. IEEE Trans. Electron. Dev. 56, 1388 (2009).
16.Zheng, G.F., Lu, W., Jin, S., and Lieber, C.M.: Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16, 1890 (2004).
17.Kim, B.S., Koo, T.W., Lee, J.H., Kim, D.S., Jung, Y.C., Hwang, S.W., Choi, B.L., Lee, E.K., Kim, J.M., and Whang, D.: Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 9, 864 (2009).
18.Schmid, H., Björk, M.T., Knoch, J., Riel, H., Riess, W., Rice, P., and Topuria, T.: Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys. 103, 024304 (2008).
19.Li, F., Nellist, P.D., and Cockayne, D.J.H.: Doping-dependent nanofaceting on silicon nanowire surfaces. Appl. Phys. Lett. 94, 263111 (2009).
20.Schmid, H., Björk, M.T., Knoch, J., Karg, S., Riel, H., and Riess, W.: Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 9, 173 (2009).
21.Perea, D.E., Hemesath, E.R., Schwalbach, E.J., Lensch-Falk, J.L., Voorhees, P.W., and Lauhon, L.J.: Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat. Nanotechnol. 4, 315 (2009).
22.Wang, Y.F., Lew, K.K., Ho, T.T., Pan, L., Novak, S.W., Dickey, E.C., Redwing, J.M., and Mayer, T.S.: Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett. 5, 2139 (2005).
23.Koren, E., Rosenwaks, Y., Allen, J.E., Hemesath, E.R., and Lauhon, L.J.: Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 95, 092105 (2009).
24.Celle, C., Mouchet, C., Rouviere, E., Simonato, J.P., Mariolle, D., Chevalier, N., and Brioude, A.: Controlled in situ n-doping of silicon nanowires during VLS growth and their characterization by scanning spreading resistance microscopy. J. Phys. Chem. C 114, 760 (2010).
25.Nimmatoori, P., Zhang, Q., Dickey, E.C., and Redwing, J.M.: Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition. Nanotechnology 20, 025607 (2009).
26.Imamura, G., Kawashima, T., Fujii, M., Nishimura, C., Saitoh, T., and Hayashi, S.: Distribution of active impurities in single silicon nanowires. Nano Lett. 8, 2620 (2008).
27.Lauhon, L.J., Gudiksen, M.S., Wang, C.L., and Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).
28.Lew, K.K., Pan, L., Bogart, T.E., Dilts, S.M., Dickey, E.C., Redwing, J.M., Wang, Y.F., Cabassi, M., Mayer, T.S., and Novak, S.W.: Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl. Phys. Lett. 85, 3101 (2004).
29.Givargizov, E.I.: Periodic instability in whisker growth. J. Cryst. Growth 20, 217 (1973).
30.Wacaser, B.A., Reuter, M.C., Khayyat, M.M., Wen, C.Y., Haight, R., Guha, S., and Ross, F.M.: Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett. 9, 3296 (2009).
31.Lee, W.F., Lee, C.Y., Ho, M.L., Huang, C.T., Lai, C.H., Hsieh, H.Y., Chou, P.T., and Chen, L.J.: Nd-doped silicon nanowires with room temperature ferromagnetism and infrared photoemission. Appl. Phys. Lett. 94, 263117 (2009).
32.Kodambaka, S., Hannon, J.B., Tromp, R.M., and Ross, F.M.: Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292 (2006).
33.Greytak, A.B., Lauhon, L.J., Gudiksen, M.S., and Lieber, C.M.: Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176 (2004).
34.Tutuc, E., Appenzeller, J., Reuter, M.C., and Guha, S.: Realization of a linear germanium nanowire p-n junction. Nano Lett. 6, 2070 (2006).
35.Le, S.T., Jannaty, P., Zaslavsky, A., Dayeh, S.A., and Picraux, S.T.: Growth, electrical rectification, and gate control in axial in situ doped p-n junction germanium nanowires. Appl. Phys. Lett. 96, 262102 (2010).
36.Wang, D. and Dai, H.: Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A 85, 217 (2006).
37.Tutuc, E., Chu, J.O., Ott, J.A., and Guha, S.: Doping of germanium nanowires grown in presence of PH3. Appl. Phys. Lett. 89, 263101 (2006).
38.Sutter, E. and Sutter, P.: Vapor-liquid-solid growth and Sb doping of Ge nanowires from a liquid Au-Sb-Ge ternary alloy. Appl. Phys. A 99, 217 (2010).
39.Wang, D.W., Wang, Q., Javey, A., Tu, R., Dai, H.J., Kim, H., McIntyre, P.C., Krishnamohan, T., and Saraswat, K.C.: Germanium nanowire field-effect transistors with SiO2 and high-kappa HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432 (2003).
40.Tutuc, E., Guha, S., and Chu, J.O.: Morphology of germanium nanowires grown in presence of B2H6. Appl. Phys. Lett. 88, 043113 (2006).
41.Grossi, V., Bussolotti, F., Passacantando, M., Santucci, S., and Ottaviano, L.: Mn doping of germanium nanowires by vapour-liquid-solid deposition. Superlattices Microstruct. 44, 489 (2008).
42.Choi, H.J., Seong, H.K., Lee, J.C., and Sung, Y.M.: Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269, 472 (2004).
43.Yang, Y., Zhao, Q., Zhang, X.Z., Liu, Z.G., Zou, C.X., Shen, B., and Yu, D.P.: Mn-doped AIN nanowires with room temperature ferromagnetic ordering. Appl. Phys. Lett. 90, 092118 (2007).
44.Liu, J., Meng, X.M., Jiang, Y., Lee, C.S., Bello, I., and Lee, S.T.: Gallium nitride nanowires doped with silicon. Appl. Phys. Lett. 83, 4241 (2003).
45.Son, M.S., Im, S.I., Park, Y.S., Park, C.M., Kang, T.W., and Yoo, K.H.: Ultraviolet photodetector based on single GaN nanorod p-n junctions. Mater. Sci. Eng., C 26, 886 (2006).
46.Guo, W., Zhang, M., Banerjee, A., and Bhattacharya, P.: Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10, 3355 (2010).
47.Furtmayr, F., Vielemeyer, M., Stutzmann, M., Laufer, A., Meyer, B.K., and Eickhoff, M.: Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 104, 074309 (2008).
48.Qian, F., Li, Y., Gradecak, S., Wang, D.L., Barrelet, C.J., and Lieber, C.M.: Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004).
49.Zhong, Z.H., Qian, F., Wang, D.L., and Lieber, C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003).
50.Cheng, G.S., Kolmakov, A., Zhang, Y.X., Moskovits, M., Munden, R., Reed, M.A., Wang, G.M., Moses, D., and Zhang, J.P.: Current rectification in a single GaN nanowire with a well-defined p-n junction. Appl. Phys. Lett. 83, 1578 (2003).
51.Limbach, F., Schafer-Nolte, E.O., Caterino, R., Gotschke, T., Stoica, T., Sutter, E., and Calarco, R.: Morphology and optical properties of Mg doped GaN nanowires in dependence of growth temperature. J. Optoelectron. Adv. Mater. 12, 1433 (2010).
52.Tang, Y.B., Chen, Z.H., Song, H.S., Lee, C.S., Cong, H.T., Cheng, H.M., Zhang, W.J., Bello, I., and Lee, S.T.: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 8, 4191 (2008).
53.Zhou, S.M.: Near UV photoluminescence of Hg-doped GaN nanowires. Physica E 33, 394 (2006).
54.Han, D.S., Park, J., Rhie, K.W., Kim, S., and Chang, J.: Ferromagnetic Mn-doped GaN nanowires. Appl. Phys. Lett. 86, 032506 (2005).
55.Radovanovic, P.V., Stamplecoskie, K.G., and Pautler, B.G.: Dopant ion concentration dependence of growth and faceting of manganese-doped GaN nanowires. J. Am. Chem. Soc. 129, 10980 (2007).
56.Chen, Z.G., Cheng, L.N., Lu, G.Q., and Zou, J.: Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 21, 375701 (2010).
57.Seo, H.W., Bae, S.Y., Park, J., Kang, M.I., and Kim, S.: Nitrogen-doped gallium phosphide nanowires. Chem. Phys. Lett. 378, 420 (2003).
58.Han, D.S., Bae, S.Y., Seo, H.W., Kang, Y.J., Park, J., Lee, G., Ahn, J.P., Kim, S., and Chang, J.: Synthesis and magnetic properties of manganese-doped GaP nanowires. J. Phys. Chem. B. 109, 9311 (2005).
59.Lee, H.G., Jeon, H.C., Kang, T.W., and Kim, T.W.: Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 78, 3319 (2001).
60.Hilse, M., Ramsteiner, M., Breuer, S., Geelhaar, L., and Riechert, H.: Incorporation of the dopants Si and Be into GaAs nanowires. Appl. Phys. Lett. 96, 193104 (2010).
61.Colombo, C., Heibeta, M., Gratzel, M., and Fontcuberta i Morral, A.: Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).
62.Tomioka, K., Motohisa, J., Hara, S., Hiruma, K., and Fukui, T.: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639 (2010).
63.Sladek, K., Klinger, V., Wensorra, J., Akabori, M., Hardtdegen, H., and Grutzmacher, D.: MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires. J. Cryst. Growth 312, 635 (2010).
64.Czaban, J.A., Thompson, D.A., and LaPierre, R.R.: GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9, 148 (2009).
65.Caram, J., Sandoval, C., Tirado, M., Comedi, D., Czaban, J., Thompson, D.A., and LaPierre, R.R.: Electrical characteristics of core-shell p-n GaAs nanowire structures with Te as the n-dopant. Nanotechnology 21, 134007 (2010).
66.Dufouleur, J., Colombo, C., Garma, T., Ketterer, B., Uccelli, E., Nicotra, M., and Morral, A.F.I.: P-doping mechanisms in catalyst-free gallium arsenide nanowires. Nano Lett. 10, 1734 (2010).
67.Ketterer, B., Mikheev, E., Uccelli, E., and Fontcuberta i Morral, A.: Compensation mechanism in silicon-doped gallium arsenide nanowires. Appl. Phys. Lett. 97, 223103 (2010).
68.Gutsche, C., Regolin, I., Blekker, K., Lysov, A., Prost, W., and Tegude, F.J.: Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 105, 024305 (2009).
69.Wallentin, J., Persson, J.M., Wagner, J.B., Samuelson, L., Deppert, K., and Borgström, M.T.: High-performance single nanowire tunnel diodes. Nano Lett. 10, 974 (2010).
70.Martelli, F., Rubini, S., Piccin, M., Bais, G., Jabeen, F., De Franceschi, S., Grillo, V., Carlino, E., D’Acapito, F., Boscherini, F., Cabrini, S., Lazzarino, M., Businaro, L., Romanato, F., and Franciosi, A.: Manganese-induced growth of GaAs nanowires. Nano Lett. 6, 2130 (2006).
71.Richter, T., Luth, H., Schapers, T., Meijers, R., Jeganathan, K., Hernandez, S.E., Calarco, R., and Marso, M.: Electrical transport properties of single undoped and n-type doped InN nanowires. Nanotechnology 20, 405206 (2009).
72.Cusco, R., Domenech-Amador, N., Artus, L., Gotschke, T., Jeganathan, K., Stoica, T., and Calarco, R.: Probing the electron density in undoped, Si-doped, and Mg-doped InN nanowires by means of Raman scattering. Appl. Phys. Lett. 97, 221906 (2010).
73.Song, H.P., Yang, A.L., Zhang, R.Q., Guo, Y., Wei, H.Y., Zheng, G.L., Yang, S.Y., Liu, X.L., Zhu, Q.S., and Wang, Z.G.: Well-aligned Zn-doped InN nanorods grown by metal-organic chemical vapor deposition and the dopant distribution. Cryst. Growth Des. 9, 3292 (2009).
74.Rigutti, L., Bugallo, A.D., Tchernycheva, M., Jacopin, G., Julien, F.H., Cirlin, G., Patriarche, G., Lucot, D., Travers, L., and Harmand, J.C.: Si incorporation in InP nanowires grown by Au-assisted molecular beam epitaxy. J. Nanomater. 2009, 435451 (2009).
75.Goto, H., Nosaki, K., Tomioka, K., Hara, S., Hiruma, K., Motohisa, J., and Fukui, T.: growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2, 035004 (2009).
76.Duan, X.F., Huang, Y., Cui, Y., Wang, J.F., and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).
77.Borgström, M.T., Norberg, E., Wickert, P., Nilsson, H.A., Trägårdh, J., Dick, K.A., Statkute, G., Ramvall, P., Deppert, K., and Samuelson, L.: Precursor evaluation for in situ InP nanowire doping. Nanotechnology 19, 445602 (2008).
78.van Weert, M.H.M., Helman, A., van den Einden, W., Algra, R.E., Verheijen, M.A., Borgström, M.T., Immink, G., Kelly, J.J., Kouwenhoven, L.P., and Bakkers, E.P.A.M.: Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires. J. Am. Chem. Soc. 131, 4578 (2009).
79.Wallentin, J., Mergenthaler, K., Ek, M., Wallenberg, L.R., Samuelson, L., Deppert, K., Pistol, M.-E., and Borgström, M.T.: Probing the wurtzite conduction band structure using state-filling in highly doped InP nanowires. Nano Lett. 11, 2286 (2011).
80.De Franceschi, S., van Dam, J.A., Bakkers, E., Feiner, L.F., Gurevich, L., and Kouwenhoven, L.P.: Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 83, 344 (2003).
81.Liu, C., Dai, L., You, L.P., Xu, W.J., and Qin, G.G.: Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein–Moss effect. Nanotechnology 19, 465203 (2008).
82.van Weert, M.H.M., Wunnicke, O., Roest, A.L., Eijkemans, T.J., Yu Silov, A., and Haverkort, J.E.M., ’t Hooft, G.W., Bakkers, E.P.A.M.: Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning. Appl. Phys. Lett. 88, 043109 (2006).
83.Wallentin, J., Ek, M., Wallenberg, L.R., Samuelson, L., Deppert, K., and Borgström, M.T.: Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. Nano Lett. 10, 4807 (2010).
84.Borgström, M.T., Wallentin, J., Heurlin, M., Fält, S., Wickert, P., Leene, J., Magnusson, M.H., Deppert, K., and Samuelson, L.: Nanowires With Promise for Photovoltaics. IEEE Journal of Selected Topics in Quantum Electronics 17, 1050 (2011).
85.Thelander, C., Dick, K.A., Borgström, M.T., Fröberg, L.E., Caroff, P., Nilsson, H.A., and Samuelson, L.: The electrical and structural properties of n-type InAs nanowires grown from metal-organic precursors. Nanotechnology 21, 205703 (2010).
86.Sorensen, B.S., Aagesen, M., Sorensen, C.B., Lindelof, P.E., Martinez, K.L., and Nygard, J.: Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 92, 012119 (2008).
87.Geng, B.Y., Wang, G.Z., Jiang, Z., Xie, T., Sun, S.H., Meng, G.W., and Zhang, L.D.: Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 82, 4791 (2003).
88.Bae, S.Y., Seo, H.W., and Park, J.H.: Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B 108, 5206 (2004).
89.Li, S.Y., Lin, P., Lee, C.Y., Tseng, T.Y., and Huang, C.J.: Effect of Sn dopant on the properties of ZnO nanowires. J. Phys. D 37, 2274 (2004).
90.Gao, J.Y., Zhang, X.Z., Sun, Y.H., Zhao, Q., and Yu, D.P.: Compensation mechanism in N-doped ZnO nanowires. Nanotechnology 21, 245703 (2010).
91.Yuan, G.D., Zhang, W.J., Jie, J.S., Fan, X., Tang, J.X., Shafiq, I., Ye, Z.Z., Lee, C.S., and Lee, S.T.: Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater. 20, 168 (2008).
92.Liu, C.H., Yiu, W.C., Au, F.C.K., Ding, J.X., Lee, C.S., and Lee, S.T.: Electrical properties of zinc oxide nanowires and intramolecular p-n junctions. Appl. Phys. Lett. 83, 3168 (2003).
93.Xiang, B., Wang, P.W., Zhang, X.Z., Dayeh, S.A., Aplin, D.P.R., Soci, C., Yu, D.P., and Wang, D.L.: Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7, 323 (2007).
94.Li, P.J., Liao, Z.M., Zhang, X.Z., Zhang, X.J., Zhu, H.C., Gao, J.Y., Laurent, K., Leprince-Wang, Y., Wang, N., and Yu, D.P.: Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett. 9, 2513 (2009).
95.Yuan, G.D., Zhang, W.J., Jie, J.S., Fan, X., Zapien, J.A., Leung, Y.H., Luo, L.B., Wang, P.F., Lee, C.S., and Lee, S.T.: P-type ZnO nanowire arrays. Nano Lett. 8, 2591 (2008).
96.Liu, W., Xiu, F.X., Sun, K., Xie, Y.H., Wang, K.L., Wang, Y., Zou, J., Yang, Z., and Liu, J.L.: Na-doped p-type ZnO microwires. J. Am. Chem. Soc. 132, 2498 (2010).
97.Chang, Y.Q., Wang, D.B., Luo, X.H., Xu, X.Y., Chen, X.H., Li, L., Chen, C.P., Wang, R.M., Xu, J., and Yu, D.P.: Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn1-x MnxO nanowires via vapor phase growth. Appl. Phys. Lett. 83, 4020 (2003).
98.Liu, J.J., Yu, M.H., and Zhou, W.L.: Well-aligned Mn-doped ZnO nanowires synthesized by a chemical-vapor-deposition method. Appl. Phys. Lett. 87, 172505 (2005).
99.Radovanovic, P.V., Barrelet, C.J., Gradecak, S., Qian, F., and Lieber, C.M.: General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 5, 1407 (2005).
100.Willander, M., Nur, O., Zhao, Q.X., Yang, L.L., Lorenz, M., Cao, B.Q., Perez, J.Z., Czekalla, C., Zimmermann, G., Grundmann, M., Bakin, A., Behrends, A., Al-Suleiman, M., El-Shaer, A., Mofor, A.C., Postels, B., Waag, A., Boukos, N., Travlos, A., Kwack, H.S., Guinard, J., and Dang, D.L.: Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 20, 332001 (2009).
101.Fan, Z.Y. and Lu, J.G.: Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol 5, 1561 (2005).
102.Chen, Y.Q., Jiang, J., Wang, B., and Hou, J.G.: Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth. J. Phys. D: Appl. Phys. 37, 3319 (2004).
103.Wan, Q., Song, Z.T., Feng, S.L., and Wang, T.H.: Single-crystalline tin-doped indium oxide whiskers: Synthesis and characterization. Appl. Phys. Lett. 85, 4759 (2004).
104.Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y.B., Pan, X.Q., and Lu, W.: High-performance transparent conducting oxide nanowires. Nano Lett. 6, 2909 (2006).
105.Nguyen, P., Ng, H.T., Kong, J., Cassell, A.M., Quinn, R., Li, J., Han, J., McNeil, M., and Meyyappan, M.: Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett. 3, 925 (2003).
106.Wan, Q., Dattoli, E.N., and Lu, W.: Transparent metallic Sb-doped SnO2 nanowires. Appl. Phys. Lett. 90, 222107 (2007).
107.Klamchuen, A., Yanagida, T., Nagashima, K., Seki, S., Oka, K., Taniguchi, M., and Kawai, T.: Crucial role of doping dynamics on transport properties of Sb-doped SnO2 nanowires. Appl. Phys. Lett. 95, 053105 (2009).
108.Jie, J.S., Zhang, W.J., Bello, I., Lee, C.S., and Lee, S.T.: One-dimensional II-VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today 5, 313 (2010).
109.Wacaser, B.A., Dick, K.A., Johansson, J., Borgström, M.T., Deppert, K., and Samuelson, L.: Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153 (2009).
110.Dick, K.A.: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138 (2008).
111.Allen, J.E., Perea, D.E., Hemesath, E.R., and Lauhon, L.J.: Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy. Adv. Mater. 21, 3067 (2009).
112.Verheijen, M.A., Immink, G., de Smet, T., Borgström, M.T., and Bakkers, E.P.A.M.: Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc. 128, 1353 (2006).
113.Borgström, M.T., Wallentin, J., Trägårdh, J., Ramvall, P., Ek, M., Wallenberg, L.R., Samuelson, L., and Deppert, K.: In situ etching for total control over axial and radial nanowire growth. Nano Research 3, 264 (2010).
114.Kuphal, E.: Preparation and characterization of LPE InP. J. Cryst. Growth 54, 117 (1981).
115.Logan, R.A., Tanbunek, T., and Sergent, A.M.: Doping of InP and GaInAs with S during metalorganic vapor phase epitaxy. J. Appl. Phys. 65, 3723 (1989).
116.Li, N., Tan, T.Y., and Gösele, U.: Transition region width of nanowire hetero- and pn-junctions grown using vapor–liquid–solid processes. Appl. Phys. A 90, 591 (2008).
117.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., and Samuelson, L.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).
118.Borgström, M.T., Verheijen, M.A., Immink, G., de Smet, T., and Bakkers, E.P.A.M.: Interface study on heterostructured GaP–GaAs nanowires. Nanotechnology 17, 4010 (2006).
119.Fröberg, L.E., Wacaser, B.A., Wagner, J.B., Jeppesen, S., Ohlsson, B.J., Deppert, K., and Samuelson, L.: Transients in the formation of nanowire heterostructures. Nano Lett. 8, 3815 (2008).
120.Wen, C.Y., Reuter, M.C., Bruley, J., Tersoff, J., Kodambaka, S., Stach, E.A., and Ross, F.M.: Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 326, 1247 (2009).
121.Glas, F., Harmand, J-C., and Patriarche, G.: Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 104, 135501 (2010).
122.Peelaers, H., Partoens, B., and Peeters, F.M.: Formation and segregation energies of B and P doped and BP codoped silicon nanowires. Nano Lett. 6, 2781 (2006).
123.Fernandez-Serra, M.V., Adessi, C., and Blase, X.: Surface segregation and backscattering in doped silicon nanowires. Phys. Rev. Lett. 96, 166805 (2006).
124.Xie, P., Hu, Y.J., Fang, Y., Huang, J.L., and Lieber, C.M.: Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. USA 106, 15254 (2009).
125.Johansson, J., Karlsson, L.S., Svensson, C.P.T., Mårtensson, T., Wacaser, B.A., Deppert, K., Samuelson, L., and Seifert, W.: Structural properties of (111)B-oriented III-V nanowires. Nat. Mater. 5, 574 (2006).
126.Chichibu, S., Kushibe, M., Eguchi, K., Funemizu, M., and Ohba, Y.: High-concentration Zn doping in Inp grown by low-pressure metalorganic chemical vapor-deposition. J. Appl. Phys. 68, 859 (1990).
127.Diarra, M., Niquet, Y.M., Delerue, C., and Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007).
128.Björk, M.T., Schmid, H., Knoch, J., Riel, H., and Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4, 103 (2009).
129.Hong, K-H., Kim, J., Lee, J.H., Shin, J., and Chung, U.I.: Asymmetric doping in silicon nanostructures: the impact of surface dangling bonds. Nano Lett. 10, 1671 (2010).
130.Arbiol, J., Estrade, S., Prades, J.D., Cirera, A., Furtmayr, F., Stark, C., Laufer, A., Stutzmann, M., Eickhoff, M., Gass, M.H., Bleloch, A.L., Peiro, F., and Morante, J.R.: Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 20, 145704 (2009).
131.Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., and Golberg, D.: Excellent field-emission properties of P-doped GaN nanowires. J. Phys. Chem. B 109, 21521 (2005).
132.Ford, A.C., Chuang, S., Ho, J.C., Chueh, Y.L., Fan, Z.Y., and Javey, A.: Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. Nano Lett. 10, 509 (2010).
133.Moselund, K.E., Ghoneim, H., Schmid, H., Björk, M.T., Lortscher, E., Karg, S., Signorello, G., Webb, D., Tschudy, M., Beyeler, R., and Riel, H.: Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors. Nanotechnology 21, 435202 (2010).
134.Ho, J.C., Yerushalmi, R., Jacobson, Z.A., Fan, Z., Alley, R.L., and Javey, A.: Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 7, 62 (2008).
135.Dhara, S., Datta, A., Wu, C.T., Lan, Z.H., Chen, K.H., Wang, Y.L., Chen, Y.F., Hsu, C.W., Chen, L.C., Lin, H.M., and Chen, C.C.: Blueshift of yellow luminescence band in self-ion-implanted n-GaN nanowire. Appl. Phys. Lett. 84, 3486 (2004).
136.Hayden, O., Björk, M.T., Schmid, H., Riel, H., Drechsler, U., Karg, S.F., Lortscher, E., and Riess, W.: Fully depleted nanowire field-effect transistor in inversion mode. Small 3, 230 (2007).
137.Cohen, G.M., Rooks, M.J., Chu, J.O., Laux, S.E., Solomon, P.M., Ott, J.A., Miller, R.J., and Haensch, W.: Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain. Appl. Phys. Lett. 90, 233110 (2007).
138.Stichtenoth, D., Wegener, K., Gutsche, C., Regolin, I., Tegude, F.J., Prost, W., Seibt, M., and Ronning, C.: P-type doping of GaAs nanowires. Appl. Phys. Lett. 92, 163107 (2008).
139.Colli, A., Fasoli, A., Ronning, C., Pisana, S., Piscanec, S., and Ferrari, A.C.: Ion beam doping of silicon nanowires. Nano Lett. 8, 2188 (2008).
140.Das Kanungo, P., Kögler, R., Nguyen-Duc, K., Zakharov, N., Werner, P., and Gösele, U.: Ex situ n and p doping of vertical epitaxial short silicon nanowires by ion implantation. Nanotechnology 20, 165706 (2009).
141.Hoffmann, S., Bauer, J., Ronning, C., Stelzner, T., Michler, J., Ballif, C., Sivakov, V., and Christiansen, S.H.: Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341 (2009).
142.Li, H.Y., Wunnicke, O., Borgström, M.T., Immink, W.G.G., van Weert, M.H.M., Verheijen, M.A., and Bakkers, E.: Remote p-doping of InAs nanowires. Nano Lett. 7, 1144 (2007).
143.Simon, J., Protasenko, V., Lian, C., Xing, H., and Jena, D.: Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60 (2010).
144.Boxberg, F., Søndergaard, N., and Xu, H.Q.: Photovoltaics with piezoelectric core-shell nanowires. Nano Lett. 10, 1108 (2010).
145.Kim, J.R., Kim, B.K., Lee, I.J., Kim, J.J., Kim, J., Lyu, S.C., and Lee, C.J.: Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys. Rev. B 69, 233303 (2004).
146.Stern, E., Cheng, G., Cimpoiasu, E., Klie, R., Guthrie, S., Klemic, J., Kretzschmar, I., Steinlauf, E., Turner-Evans, D., Broomfield, E., Hyland, J., Koudelka, R., Boone, T., Young, M., Sanders, A., Munden, R., Lee, T., Routenberg, D., and Reed, M.A.: Electrical characterization of single GaN nanowires. Nanotechnology 16, 2941 (2005).
147.Sze, S.: Physics of Semiconductor Devices (Wiley, New York, 1981).
148.Morse, P.M. and Feshbach, H.: Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
149.Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., and Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247 (2004).
150.Wunnicke, O.: Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 89, 083102 (2006).
151.Khanal, D.R. and Wu, J.: Gate coupling and charge distribution in nanowire field effect transistors. Nano Lett. 7, 2778 (2007).
152.Kretinin, A.V., Popovitz-Biro, R., Mahalu, D., and Shtrikman, H.: Multimode Fabry-Perot conductance oscillations in suspended stacking-faults-free InAs nanowires. Nano Lett. 10, 3439 (2010).
153.Park, H., Beresford, R., Hong, S., and Xu, J.: Geometry- and size-dependence of electrical properties of metal contacts on semiconducting nanowires. J. Appl. Phys. 108, 094308 (2010).
154.Ivey, D.G., Jian, P., Wan, L., Bruce, R., Eicher, S., and Blaauw, C.: Pd/Zn/Pd/Au ohmic contacts to p-type Inp. J. Electron. Mater. 20, 237 (1991).
155.Cui, Y., Zhong, Z.H., Wang, D.L., Wang, W.U., and Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149 (2003).
156.Huang, Y., Duan, X., Cui, Y., and Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).
157.Leonard, F. and Talin, A.A.: Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys. Rev. Lett. 97, 026804 (2006).
158.Thelander, C., Björk, M.T., Larsson, M.W., Hansen, A.E., Wallenberg, L.R., and Samuelson, L.: Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Commun. 131, 573 (2004).
159.Zhang, Z.Y., Yao, K., Liu, Y., Jin, C.H., Liang, X.L., Chen, Q., and Peng, L.M.: Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 17, 2478 (2007).
160.Weber, W.M., Geelhaar, L., Unger, E., Cheze, C., Kreupl, F., Riechert, H., and Lugli, P.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B Basic Res. 244, 4170 (2007).
161.Tu, R., Zhang, L., Nishi, Y., and Dai, H.J.: Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment. Nano Lett. 7, 1561 (2007).
162.Roddaro, S., Nilsson, K., Astromskas, G., Samuelson, L., Wernersson, L.E., Karlström, O., and Wacker, A.: InAs nanowire metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 92, 253509 (2008).
163.Karlström, O., Wacker, A., Nilsson, K., Astromskas, G., Roddaro, S., Samuelson, L., and Wernersson, L.E.: Analysing the capacitance-voltage measurements of vertical wrapped-gated nanowires. Nanotechnology 19, 435201 (2008).
164.Astromskas, G., Storm, K., Karlström, O., Caroff, P., Borgström, M., and Wernersson, L-E.: Doping incorporation in InAs nanowires characterized by capacitance measurements. J. Appl. Phys. 108, 054306 (2010).
165.Garnett, E.C., Tseng, Y.C., Khanal, D.R., Wu, J.Q., Bokor, J., and Yang, P.D.: Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nat. Nanotechnol. 4, 311 (2009).
166.Bakkers, E.P.A.M., Van Dam, J.A., De Franceschi, S., Kouwenhoven, L.P., Kaiser, M., Verheijen, M., Wondergem, H., and Van der Sluis, P.: Epitaxial growth of InP nanowires on germanium. Nat. Mater. 3, 769 (2004).
167.Bugajski, M. and Lewandowski, W.: Concentration-dependent absorption and photoluminescence of n-type InP. J. Appl. Phys. 57, 521 (1985).
168.Kawashima, T., Imamura, G., Saitoh, T., Komori, K., Fujii, M., and Hayashi, S.: Raman scattering studies of electrically active impurities in in situ B-Doped silicon nanowires: Effects of annealing and oxidation. J. Phys. Chem. C 111, 15160 (2007).
169.Jeganathan, K., Debnath, R.K., Meijers, R., Stoica, T., Calarco, R., Grutzmacher, D., and Luth, H.: Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires. J. Appl. Phys. 105, 123707 (2009).
170.Parkinson, P., Joyce, H.J., Gao, Q., Tan, H.H., Zhang, X., Zou, J., Jagadish, C., Herz, L.M., and Johnston, M.B.: Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 9, 3349 (2009).
171.Richter, T., Luth, H., Meijers, R., Calarco, R., and Marso, M.: doping concentration of gan nanowires determined by opto-electrical measurements. Nano Lett. 8, 3056 (2008).
172.Sanford, N.A., Blanchard, P.T., Bertness, K.A., Mansfield, L., Schlager, J.B., Sanders, A.W., Roshko, A., Burton, B.B., and George, S.M.: Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 107, 034318 (2010).
173.Putnam, M.C., Filler, M.A., Kayes, B.M., Kelzenberg, M.D., Guan, Y.B., Lewis, N.S., Eiler, J.M., and Atwater, H.A.: Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed, Si wires. Nano Lett. 8, 3109 (2008).
174.Perea, D.E., Allen, J.E., May, S.J., Wessels, B.W., Seidman, D.N., and Lauhon, L.J.: Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6, 181 (2006).
175.Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z.Y., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E., and Lauhon, L.J.: High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168 (2008).
176.Xu, T., Nys, J.P., Grandidier, B., Stievenard, D., Coffinier, Y., Boukherroub, R., Larde, R., Cadel, E., and Pareige, P.: Growth of Si nanowires on micropillars for the study of their dopant distribution by atom probe tomography. J. Vac. Sci. Technol., B 26, 1960 (2008).
177.Perea, D.E., Lensch, J.L., May, S.J., Wessels, B.W., and Lauhon, L.J.: Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl. Phys. A 85, 271 (2006).
178.Prosa, T.J., Alvis, R., Tsakalakos, L., and Smentkowski, V.S.: Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: Protected lift-out specimen preparation for atom probe tomography. J. Microsc. (Oxf.) 239, 92 (2010).
179.Lauhon, L.J., Adusumilli, P., Ronsheim, P., Flaitz, P.L., and Lawrence, D.: Atom-probe tomography of semiconductor materials and device structures. MRS Bull. 34, 738 (2009).
180.Ma, D.D.D., Lee, C.S., and Lee, S.T.: Scanning tunneling microscopic study of boron-doped silicon nanowires. Appl. Phys. Lett. 79, 2468 (2001).
181.Yang, C., Zhong, Z.H., and Lieber, C.M.: Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304 (2005).
182.Vinaji, S., Lochthofen, A., Mertin, W., Regolin, I., Gutsche, C., Prost, W., Tegude, F.J., and Bacher, G.: Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy. Nanotechnology 20, 385702 (2009).
183.Koren, E., Berkovitch, N., and Rosenwaks, Y.: Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163 (2010).
184.Ou, X., Das Kanungo, P., Kögler, R., Werner, P., Gösele, U., Skorupa, W., and Wang, X.: Carrier profiling of individual Si nanowires by scanning spreading resistance microscopy. Nano Lett. 10, 171 (2010).
185.Stiegler, J.M., Huber, A.J., Diedenhofen, S.L., Rivas, J.G., Algra, R.E., Bakkers, E., and Hillenbrand, R.: Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 1387 (2010).
186.Wang, X.F., Song, F.Q., Chen, Q., Wang, T.Y., Wang, J.L., Liu, P., Shen, M.R., Wan, J.G., Wang, G.H., and Xu, J.B.: Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: a case study on Co-Doped ZnO. J. Am. Chem. Soc. 132, 6492 (2010).
187.Jiang, X.C., Xiong, Q.H., Nam, S., Qian, F., Li, Y., and Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007).

Keywords

Doping of semiconductor nanowires

  • Jesper Wallentin (a1) and Magnus T. Borgström (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed