Skip to main content Accessibility help

Distinguishing surface effects of gold nanoparticles from plasmonic effect on photoelectrochemical water splitting by hematite

  • Jiangtian Li (a1), Scott K. Cushing (a2), Deryn Chu (a3), Peng Zheng (a4), Joeseph Bright (a4), Conner Castle (a4), Ayyakkannu Manivannan (a5) and Nianqiang Wu (a6)...


Gold nanoparticles have been deposited on the surface of hematite nanorod array photoanode to improve the photoelectrochemical water splitting performance. The Au nanoparticles induce the Fermi level equilibration, the surface catalysis, and the plasmonic enhancement effects in the Au/hematite photoanode. The Fermi level equilibration effect promotes the extraction of photo-generated charge carriers, suppressing the charge recombination. Surface catalysis effect reduces the overpotential for photoelectrochemical water oxidation. In the Au/hematite sample, the Fermi level equilibration and the surface catalysis effect make major contribution to photocurrent enhancement while the plasmonic effect makes a little contribution. In addition, the Au@SiO2 particle has been immobilized on hematite nanorod array surface that has been passivated. In the Au@SiO2/hematite sample, the photocurrent enhancement originating from plasmonic effects is negligible. Both the Femi level equilibration and the surface catalysis effects were excluded due to the isolated Au and hematite while surface passivation is mainly responsible for the photocurrent enhancement.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
2. Li, J. and Wu, N.Q.: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 5, 1360 (2015).
3. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).
4. Kim, T.W. and Choi, K.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014).
5. Cushing, S.K. and Wu, N.Q.: Plasmon-enhanced solar energy harvesting. Interface 22, 63 (2013).
6. Zhang, X., Chen, Y., Liu, R., and Tsai, D.P.: Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).
7. Linic, S., Christopher, P., and Ingram, D.B.: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).
8. Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).
9. Cushing, S.K., Li, J.T., Meng, F., Senty, T.R., Suri, S., Zhi, M., Li, M., Bristow, A.D., and Wu, N.Q.: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033 (2012).
10. Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Wurakami, H., Ohki, Y., Yoshida, N., and Watanabe, T.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).
11. Tian, Y. and Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).
12. Tian, Y. and Tatsuma, T.: Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2 . Chem. Commun. 40, 1810 (2004).
13. Torimoto, T., Horibe, H., Kameyama, T., Okazaki, K., Ikeda, S., Matsumura, M., Ishikawa, A., and Ishihara, H.: Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2, 2057 (2011).
14. Li, J., Cushing, S.K., Zheng, P., Meng, F., Chu, D., and Wu, N.Q.: Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651 (2013).
15. Subramanian, V., Wolf, E.E., and Kamat, P.V.: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).
16. Choi, H., Chen, W.T., and Kamat, P.: Know Thy Nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in Dye-Sensitized solar cells. ACS Nano 6, 4418 (2012).
17. Vayssieres, L., Beermann, N., Lindquist, S.E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13, 233 (2001).
18. Li, J., Cushing, S.K., Zheng, P., Senty, T., Meng, F., Bristow, A.D., Manivannan, A., and Wu, N.Q.: Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 136, 8438 (2014).
19. Tafalla, D., Salvador, P., and Benito, R.M.: Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes II. Analysis of the photocurrent-time dependence. J. Electrochem. Soc. 137, 1810 (1990).
20. Khan, M.R., Chuan, T., Yousuf, A., Chowdhury, M.N.K., and Cheng, C.K.: Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 5, 2522 (2015).
21. Meng, F., Cushing, S.K., Li, J.T., Hao, S.M., and Wu, N.: Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949 (2015).
22. Silvula, K., Formal, F., and Graetzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).
23. Han, J., Zong, X., Wang, Z., and Li, C.: A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 16, 23544 (2014).
24. Formal, F., Teetreault, N., Cornuz, M., Moehl, T., Graetzel, M., and Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).
25. Thomann, I., Pinaud, B.A., Chen, Z., Clemens, B.M., Jaramillo, T.F., and Brongerman, M.: Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440 (2011).
26. Thimsen, E., Formal, F.L., Graetzel, M., and Warren, S.C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).
27. Abdi, F.F., Dabirian, A., Dam, B., and van de Krol, R.: Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Phys. Chem. Chem. Phys. 16, 15272 (2014).
28. Wang, X., Peng, K., Hu, Y., Zhang, F., Hu, B., Li, L., Wang, M., Meng, X., and Lee, S.: Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett. 14, 18 (2014).
29. Sivula, K.: Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4, 1624 (2013).
30. Liu, R., Zheng, Z., Spurgeon, J., and Yang, X.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504 (2014).
31. Formal, F., Graetzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099 (2010).


Type Description Title
Supplementary materials

Li supplementary material
Li supplementary material

 Word (562 KB)
562 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed