Skip to main content Accessibility help
×
Home

Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO

  • Tobias Wähler (a1), Chantal Hohner (a1), Zhaozong Sun (a2), Ralf Schuster (a1), Jonathan Rodríguez-Fernández (a2), Jeppe Vang Lauritsen (a2) and Jörg Libuda (a3)...

Abstract

We have investigated the adsorption and dissociation of water and its co-adsorption with CO on atomically defined cobalt oxide nanoislands on Pt(111). The CoO islands were prepared under ultrahigh vacuum (UHV) conditions by reactive deposition of Co metal in oxygen atmosphere. The island structure was characterized by scanning tunneling microscopy (STM), showing that the nanoislands consist of a CoO bilayer and are regularly shaped with island edges that are mainly terminated by Co2+ ions. D2O was dosed in UHV onto the CoO islands on Pt(111) after pre-saturation with CO. D2O dissociation was monitored in situ by isothermal and temperature programmed infrared reflection absorption spectroscopy (IRAS). Isotopic exchange experiments were performed with H2O, D2O, and D218O to elucidate the nature of the hydroxyl groups. Three principal types of OD species are identified: (i) isolated OD at the edges of the CoO islands (Co-OeD), (ii) OD groups within larger hydroxylated areas on the CoO islands (Co-OcD), and (iii) isolated OD groups on the CoO terraces (Co-OtD). At 400 K, water adsorbs dissociatively on the CoO islands and forms isolated hydroxyl species (Co-OeD) at the island edges only. At room temperature (300 K), the coverage of hydroxyl groups increases rapidly, in line with the water-assisted hydroxylation reaction suggested previously. Adsorption experiments with D218O suggest that two equivalent groups are formed from one water molecule after dissociation at island edges, leading to the formation of larger hydroxylated areas on the CoO islands (Co-OcD) and, in addition, isolated OD species on the CoO terraces (Co-OtD). While the initial step of D2O dissociation is facile, the formation of larger hydroxylated areas is a slow and irreversible process. At 200 K, the formation of hydroxylated areas is accompanied by the co-adsorption of molecular water. The hydroxyl groups on the CoO islands are shown to interact with the CO preadsorbed on the CoO/Pt(111) model system. In particular, we observe a new CO species, stabilized by OD groups on the CoO islands, which adsorbs much stronger than CO on the OD-free CoO surface.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: jvang@inano.au.dk

References

Hide All
1.Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).
2.Kandalkar, S.G., Gunjakar, J.L., and Lokhande, C.D.: Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci. 254, 5540 (2008).
3.Wang, H-Y., Hung, S-F., Chen, H-Y., Chan, T-S., Chen, H.M., and Liu, B.: In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138, 36 (2016).
4.Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).
5.Xie, X., Li, Y., Liu, Z-Q., Haruta, M., and Shen, W.: Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746 (2009).
6.Kumar, N., Jothimurugesan, K., Stanley, G.G., Schwartz, V., and Spivey, J.J.: In situ FT-IR study on the effect of cobalt precursors on CO adsorption behavior. J. Phys. Chem. C 115, 990 (2011).
7.Thormählen, P., Skoglundh, M., Fridell, E., and Andersson, B.: Low-temperature CO oxidation over platinum and cobalt oxide catalysts. J. Catal. 188, 300 (1999).
8.Cunningham, D.A.H., Kobayashi, T., Kamijo, N., and Haruta, M.: Influence of dry operating conditions: Observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts. Catal. Lett. 25, 257 (1994).
9.Liao, L., Zhang, Q., Su, Z., Zhao, Z., Wang, Y., Li, Y., Lu, X., Wei, D., Feng, G., Yu, Q., Cai, X., Zhao, J., Ren, Z., Fang, H., Robles-Hernandez, F., Baldelli, S., and Bao, J.: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69 (2013).
10.Rosen, J., Hutchings, G.S., and Jiao, F.: Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 135, 4516 (2013).
11.Yamada, Y., Yano, K., Hong, D., and Fukuzumi, S.: LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Phys. Chem. Chem. Phys. 14, 5753 (2012).
12.Willinger, E., Massué, C., Schlögl, R., and Willinger, M.G.: Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 139, 12093 (2017).
13.Cheng, J., Zhang, H., Chen, G., and Zhang, Y.: Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochim. Acta 54, 6250 (2009).
14.Fester, J., Garcia-Melchor, M., Walton, A.S., Bajdich, M., Li, Z., Lammich, L., Vojvodic, A., and Lauritsen, J.V.: Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 8, 14169 (2017).
15.Ullman, A.M., Brodsky, C.N., Li, N., Zheng, S-L., and Nocera, D.G.: Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138, 4229 (2016).
16.Kanan, M.W., Yano, J., Surendranath, Y., Dincă, M., Yachandra, V.K., and Nocera, D.G.: Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692 (2010).
17.Du, P., Kokhan, O., Chapman, K.W., Chupas, P.J., and Tiede, D.M.: Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. J. Am. Chem. Soc. 134, 11096 (2012).
18.Ling, T., Yan, D-Y., Jiao, Y., Wang, H., Zheng, Y., Zheng, X., Mao, J., Du, X-W., Hu, Z., Jaroniec, M., and Qiao, S-Z.: Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 7, 12876 (2016).
19.Song, F. and Hu, X.: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).
20.Huang, J., Chen, J., Yao, T., He, J., Jiang, S., Sun, Z., Liu, Q., Cheng, W., Hu, F., Jiang, Y., Pan, Z., and Wei, S.: CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54, 8722 (2015).
21.Ketteler, G., Yamamoto, S., Bluhm, H., Andersson, K., Starr, D.E., Ogletree, D.F., Ogasawara, H., Nilsson, A., and Salmeron, M.: The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111, 8278 (2007).
22.Kimmel, G.A., Baer, M., Petrik, N.G., VandeVondele, J., Rousseau, R., and Mundy, C.J.: Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3, 778 (2012).
23.Balajka, J., Aschauer, U., Mertens, S.F.L., Selloni, A., Schmid, M., and Diebold, U.: Surface structure of TiO2 rutile (011) exposed to liquid water. J. Phys. Chem. C 121, 26424 (2017).
24.Diebold, U.: Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).
25.He, Y., Tilocca, A., Dulub, O., Selloni, A., and Diebold, U.: Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat. Mater. 8, 585 (2009).
26.Noei, H., Qiu, H., Wang, Y., Löffler, E., Wöll, C., and Muhler, M.: The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 10, 7092 (2008).
27.Meyer, B., Marx, D., Dulub, O., Diebold, U., Kunat, M., Langenberg, D., and Wöll, C.: Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew. Chem., Int. Ed. 43, 6641 (2004).
28.Dementyev, P., Dostert, K-H., Ivars-Barceló, F., O’Brien, C.P., Mirabella, F., Schauermann, S., Li, X., Paier, J., Sauer, J., and Freund, H-J.: Water interaction with iron oxides. Angew. Chem., Int. Ed. 54, 13942 (2015).
29.Mirabella, F., Zaki, E., Ivars-Barcelo, F., Li, X., Paier, J., Sauer, J., Shaikhutdinov, S., and Freund, H-J.: Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111) surfaces. Angew. Chem. 57, 1409 (2018).
30.Li, X. and Paier, J.: Adsorption of water on the Fe3O4(111) surface: Structures, stabilities, and vibrational properties studied by density functional theory. J. Phys. Chem. C 120, 1056 (2016).
31.Rim, K.T., Eom, D., Chan, S-W., Flytzani-Stephanopoulos, M., Flynn, G.W., Wen, X-D., and Batista, E.R.: Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: Implications for catalysis. J. Am. Chem. Soc. 134, 18979 (2012).
32.Leist, U., Ranke, W., and Al-Shamery, K.: Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111), and Fe2O3(biphase). Phys. Chem. Chem. Phys. 5, 2435 (2003).
33.Meier, M., Hulva, J., Jakub, Z., Pavelec, J., Setvin, M., Bliem, R., Schmid, M., Diebold, U., Franchini, C., and Parkinson, G.S.: Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. USA 115, E5642 (2018).
34.Wang, W., Zhang, H., Wang, W., Zhao, A., Wang, B., and Hou, J.G.: Observation of water dissociation on nanometer-sized FeO islands grown on Pt(111). Chem. Phys. Lett. 500, 76 (2010).
35.Daschbach, J.L., Dohnálek, Z., Liu, S-R., Smith, R.S., and Kay, B.D.: Water adsorption, desorption, and clustering on FeO(111). J. Phys. Chem. B 109, 10362 (2005).
36.Joseph, Y., Kuhrs, C., Ranke, W., Ritter, M., and Weiss, W.: Adsorption of water on FeO(111) and Fe3O4(111): Identification of active sites for dissociation. Chem. Phys. Lett. 314, 195 (1999).
37.Schwarz, M., Faisal, F., Mohr, S., Hohner, C., Werner, K., Xu, T., Skála, T., Tsud, N., Prince, K.C., Matolín, V., Lykhach, Y., and Libuda, J.: Structure-dependent dissociation of water on cobalt oxide. J. Phys. Chem. Lett. 9, 2763 (2018).
38.Schwarz, M., Mohr, S., Hohner, C., Werner, K., Xu, T., and Libuda, J.: Water on atomically-defined cobalt oxide surfaces studied by temperature-programmed IR reflection absorption spectroscopy and steady state isotopic exchange. J. Phys. Chem. C Article ASAP (2018) doi: https://doi.org/10.1021/acs.jpcc.8b04611.
39.Fester, J., Sun, Z., Rodriguez-Fernandez, J., Walton, A., and Lauritsen, J.V.: Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions. J. Phys. Chem. B 122, 561 (2018).
40.Fester, J., Bajdich, M., Walton, A.S., Sun, Z., Plessow, P.N., Vojvodic, A., and Lauritsen, J.V.: Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111), and Ag(111). Top. Catal. 60, 503 (2017).
41.Fester, J., Walton, A., Li, Z., and Lauritsen, J.V.: Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Phys. Chem. Chem. Phys. 19, 2425 (2017).
42.Walton, A.S., Fester, J., Bajdich, M., Arman, M.A., Osiecki, J., Knudsen, J., Vojvodic, A., and Lauritsen, J.V.: Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9, 2445 (2015).
43.Ferstl, P., Mehl, S., Arman, M.A., Schuler, M., Toghan, A., Laszlo, B., Lykhach, Y., Brummel, O., Lundgren, E., Knudsen, J., Hammer, L., Schneider, M.A., and Libuda, J.: Adsorption and activation of CO on Co3O4(111) thin films. J. Phys. Chem. C 119, 16688 (2015).
44.Xu, T., Schwarz, M., Werner, K., Mohr, S., Amende, M., and Libuda, J.: The surface structure matters: Thermal stability of phthalic acid anchored to atomically-defined cobalt oxide films. Phys. Chem. Chem. Phys. 18, 10419 (2016).
45.Giovanardi, C., Hammer, L., and Heinz, K.: Ultrathin cobalt oxide films on Ir(100) − (1 × 1). Phys. Rev. B 74, 125429-1 (2006).
46.Gubo, M., Ebensperger, C., Meyer, W., Hammer, L., and Heinz, K.: Substoichiometric cobalt oxide monolayer on Ir(100) − (1 × 1). J. Phys.: Condens. Matter 21, 474211 (2009).
47.Heinz, K. and Hammer, L.: Epitaxial cobalt oxide films on Ir(100)-the importance of crystallographic analyses. J. Phys.: Condens. Matter 25, 173001 (2013).
48.Biedermann, K., Gubo, M., Hammer, L., and Heinz, K.: Phases and phase transitions of hexagonal cobalt oxide films on Ir(100) − (1 × 1). J. Phys.: Condens. Matter 21, 185003 (2009).
49.Merte, L.R., Knudsen, J., Grabow, L.C., Vang, R.T., Lægsgaard, E., Mavrikakis, M., and Besenbacher, F.: Correlating STM contrast and atomic-scale structure by chemical modification: Vacancy dislocation loops on FeO/Pt(111). Surf. Sci. 603, L15 (2009).
50.Weng, X., Zhang, K., Pan, Q., Martynova, Y., Shaikhutdinov, S., and Freund, H-J.: Support effects on CO oxidation on metal-supported ultrathin FeO(1 1 1) films. ChemCatChem 9, 705 (2017).
51.Daschbach, J.L., Peden, B.M., Smith, R.S., and Kay, B.D.: Adsorption, desorption, and clustering of H2O on Pt(111). J. Chem. Phys. 120, 1516 (2004).
52.Picolin, A., Busse, C., Redinger, A., Morgenstern, M., and Michely, T.: Desorption of H2O from flat and stepped Pt(111). J. Phys. Chem. C 113, 691 (2009).
53.Fisher, G.B. and Gland, J.L.: The interaction of water with the Pt(111) surface. Surf. Sci. 94, 446 (1980).
54.Petrik, N.G., Kimmel, G.A.: Electronstimulated reactions in thin D2O films on Pt(111) mediated by electron trapping. J. Chem. Phys. 121, 3727 (2004).
55.Fujimori, Y., Zhao, X., Shao, X., Levchenko, S.V., Nilius, N., Sterrer, M., and Freund, H-J.: Interaction of water with the CaO(001) surface. J. Phys. Chem. C 120, 5565 (2016).
56.Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Wendt, S., Laegsgaard, E., Mavrikakis, M., and Besenbacher, F.: Water-mediated proton hopping on an iron oxide surface. Science 336, 889 (2012).
57.Hoffmann, F.M.: Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf. Sci. Rep. 3, 107 (1983).
58.Gajdos, M., Eichler, A., and Hafner, J.: CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations. J. Phys.: Condens. Matter 16, 1141 (2004).
59.Sun, Y-N., Qin, Z-H., Lewandowski, M., Carrasco, E., Sterrer, M., Shaikhutdinov, S., and Freund, H-J.: Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266, 359 (2009).
60.Carrasco, E., Aumer, A., Brown, M.A., Dowler, R., Palacio, I., Song, S., and Sterrer, M.: Infrared spectra of high coverage CO adsorption structures on Pt(111). Surf. Sci. 604, 1320 (2010).
61.Persson, B.N.J., Tüshaus, M., and Bradshaw, A.M.: On the nature of dense CO adlayers. J. Chem. Phys. 92, 5034 (1990).
62.Tüshaus, M., Schweizer, E., Hollins, P., and Bradshaw, A.M.: Yet another vibrational study of the adsorption system Pt{111}-CO. J. Electron Spectrosc. Relat. Phenom. 44, 305 (1987).
63.Spoto, G., Gribov, E.N., Ricchiardi, G., Damin, A., Scarano, D., Bordiga, S., Lamberti, C., and Zecchina, A.: Carbon monoxide MgO from dispersed solids to single crystals: A review and new advances. Prog. Surf. Sci. 76, 71 (2004).
64.Li, X., Paier, J., Sauer, J., Mirabella, F., Zaki, E., Ivars-Barcelo, F., Shaikhutdinov, S., and Freund, H-J.: Surface termination of Fe3O4(111) films studied by CO adsorption revisited. J. Phys. Chem. B 122, 527 (2018).
65.Olsen, C.W. and Masel, R.I.: An infrared study of CO adsorption on Pt(111). Surf. Sci. 201, 444 (1988).
66.Scarano, D., Spoto, G., Bordiga, S., Coluccia, S., and Zecchina, A.: CO adsorption at 77 K on CoO/MgO and NiO/MgO solid solutions: A fourier-transform infrared study. J. Chem. Soc., Faraday Trans. 88, 291 (1992).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wähler et al. supplementary material
Wähler et al. supplementary material 1

 Unknown (9.9 MB)
9.9 MB
UNKNOWN
Supplementary materials

Wähler et al. supplementary material
Wähler et al. supplementary material 2

 Unknown (6.3 MB)
6.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed