Skip to main content Accessibility help

Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel

  • Rathinavelu Sokkalingam (a1), Veerappan Muthupandi (a1), Katakam Sivaprasad (a1) and Konda Gokuldoss Prashanth (a2)


High-entropy alloys (HEAs) have been proven to exhibit superior structural properties from cryogenic to high temperatures, demonstrating their structural stability against the formation of complex intermetallic phases or compounds as major fractions. These characteristics can find applications in nuclear and aerospace sectors as structural materials. As the dissimilar joint design is necessary for such applications, an attempt is made to fabricate the dissimilar transition joint between Al0.1CoCrFeNi-HEA and AISI304 austenitic stainless steel by conventional tungsten inert gas welding. Microstructural characterization by SEM and EBSD clearly revealed the evolution of columnar dendritic structures from the interfaces and their transformation to equiaxed dendritic grains as they reach the weld center. Also, considerable grain coarsening was observed in the heat-affected zone of the HEA. The tensile test results depict that the dissimilar weld joint showed significantly higher tensile strength (590 MPa) than the HEA (327 MPa), making it suitable for structural applications.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Yvon, P. and Carre, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217 (2009).
2.Murty, K.L. and Charit, I.: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189 (2008).
3.Zinkle, S.J. and Ghoniem, N.M.: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51, 55 (2000).
4.Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Switzerland, 2016); pp. 1, 50.
5.Guo, W.: Molecular dynamics simulation of irradiation damage in multicomponent alloys. Ph.D. thesis, University of Tennessee, Knoxville, Tennessee, 2015; pp. 1, 20.
6.Kiran Kumar, N.A.P., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).
7.Egami, T., Ojha, M., Khorgolkhuu, O., Nicholson, D.M., and Stocks, G.M.: Local electronic effects and irradiation resistance in high-entropy alloys. JOM 67, 2345 (2015).10.1007/s11837-015-1579-1
8.Owen, L.R. and Jones, N.G.: Lattice distortions in high-entropy alloys. J. Mater. Res. 33, 2954 (2018).
9.Sokkalingam, R., Mishra, S., Cheethirala, S.R., Muthupandi, V., and Sivaprasad, K.: Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630 (2017).
10.Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).
11.Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Fang, Y., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016).
12.Chen, M., Shi, X.H., Yang, H., Liaw, P.K., Gao, M.C., Hawk, J.A., and Qiao, J.: Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310 (2018).
13.Lyu, Z., Fan, X., Lee, C., Wang, S-Y., Feng, R., and Liaw, P.K.: Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J. Mater. Res. 33, 2998 (2018).
14.Yang, T., Tang, Z., Xie, X., Carroll, R., Wang, G., Wang, Y., Dahmen, K.A., Liaw, P.K., and Zhang, Y.: Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures. Mater. Sci. Eng., A 684, 552 (2017).
15.Komarasamy, M., Kumar, N., Tang, Z., Mishra, R.S., and Liaw, P.K.: Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Mater. Res. Lett. 3, 30 (2015).
16.Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).
17.Kumar, N., Ying, Q., Nie, X., Mishra, R.S., Tang, Z., Liaw, P.K., Brennan, R.E., Doherty, K.J., and Cho, K.C.: High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).
18.Komarasamy, M., Alagarsamy, K., and Mishra, R.S.: Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics 84, 20 (2017).10.1016/j.intermet.2016.12.016
19.Kumar, N., Mukherjee, M., and Bandyopadhyay, A.: Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt. Laser Technol. 88, 24 (2017).
20.Eghlimi, A., Shamanian, M., Eskandarian, M., Zabolian, A., and Szpunar, J.A.: Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless-steel weldment joint by austenitic filler metal. Mater. Charact. 106, 208 (2015).
21.Satoh, G., Yao, Y.L., and Qiu, C.: Strength and microstructure of laser fusion-welded Ti–SS dissimilar material pair. Int. J. Adv. Des. Manuf. Technol. 66, 469 (2013).
22.Mortezaie, A. and Shamanian, M.: An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int. J. Pressure Vessels Piping 116, 37 (2014).
23.Ramkumar, K.D., Kumar, P.S.G., Radhakrishna, V.S., and Kothari, K.: Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J. Mater. Res. 30, 3288 (2015).
24.Sharma, S., Taiwade, R.V., and Vashishtha, H.: Investigation on the multi-pass gas tungsten arc welded Bi-metallic combination between nickel-based superalloy and Ti-stabilized austenitic stainless steel. J. Mater. Res. 32, 3055 (2017).
25.Zhou, S., Chai, D., Yu, J., Ma, G., and Wu, D.: Microstructure characteristic and mechanical property of pulsed laser lap-welded nickel-based superalloy and stainless steel. J. Manuf. Process. 25, 220 (2017).
26.Zhu, Z.G., Ng, F.L., Qiao, J.W., Liaw, P.K., Chen, H.C., Nai, S.M.L., Wei, J., and Bi, G.J.: Interplay between microstructure and deformation behavior of a laser-welded CoCrFeNi high entropy alloy. Mater. Res. Express 6, 046514 (2019).10.1088/2053-1591/aafabe
27.Sokkalingam, R., Sivaprasad, K., Muthupandi, V., and Duraiselvam, M.: Characterization of laser beam welded Al0.5CoCrFeNi high-entropy alloy. Key Eng. Mater. 775, 448 (2018).
28.Nahmany, M., Hooper, Z., Stern, A., Geanta, V., and Voiculescu, I.: AlxCrFeCoNi high-entropy alloys: Surface modification by electron beam bead-on-plate melting. Metallogr., Microstruct., Anal. 5, 229 (2016).
29.Wu, Z., David, S.A., Leonard, D.N., Feng, Z., and Bei, H.: Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci. Technol. Weld. Joining 23, 585 (2018).
30.Martin, A.C. and Fink, C.: Initial weldability study on Al0.5CrCoCu0.1FeNi high-entropy alloy. Weld. World 63, 739750 (2019).
31.Issartel, C., Buscail, H., Caudron, E., Cueff, R., Riffard, F., Perrier, S., Jacquet, P., and Lambertin, M.: Influence of nitridation on the oxidation of a 304 steel at 800 °C. Corros. Sci. 46, 2191 (2004).
32.Jinlong, L., Hongyun, L., and Tongxiang, L.: The grain size and special boundary dependence of corrosion resistance in 304 austenitic stainless steels. Mater. Chem. Phys. 163, 496 (2015).
33.Hou, J., Zhang, M., Ma, S., Liaw, P.K., Zhang, Y., and Qiao, J.: Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng., A 707, 593 (2017).
34.Li, D.Y. and Zhang, Y.: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).10.1016/j.intermet.2015.11.002
35.Chowdhury, S.G., Das, S., and De, P.K.: Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater. 53, 3951 (2005).
36.Lach, L., Nowak, J., and Svyetlichnyy, D.: The evolution of the microstructure in AISI 304L stainless steel during the flat rolling-modeling by frontal cellular automata and verification. J. Mater. Process. Technol. 255, 488 (2018).
37.Abreu, H.F.G., Carvalho, S.S., Neto, P.L., Santos, R.P., Freire, V.N., Silva, P.M.O., and Tavares, S.S.M.: Deformation induced martensite in an AISI 301LN stainless steel: Characterization and influence on pitting corrosion resistance. Mater. Res. 10, 359 (2007).
38.Kou, S.: Welding Metallurgy, 2nd ed. (Wiley-Interscience, Hoboken, New Jersey, 2003); pp. 1, 160.
39.Gu, Y.L., Tao, C.H., Wei, Z.W., and Liu, C.K.: Microstructural evolution and mechanical properties of TIG welded superalloy GH625. Trans. Nonferrous Met. Soc. China 26, 100 (2016).
40.Zhang, L., Li, X., Nie, Z., Huang, H., and Niu, L.: Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy. Mater. Des. 92, 880 (2016).
41.Tokita, S., Kokawa, H., Sato, Y.S., and Fujii, H.T.: In situ EBSD observation of grain boundary character distribution evolution during thermo-mechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater. Charact. 131, 31 (2017).
42.Milad, M., Zreiba, N., Elhalouani, F., and Baradai, C.: The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol. 203, 80 (2008).
43.Jo, M.G., J Kim, H., Kang, M., Madakashira, P.P., Park, E.S., Suh, J.Y., Kim, D.I., Hong, S.T., and Han, H.N.: Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met. Mater. Int. 24, 73 (2018).


Related content

Powered by UNSILO

Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel

  • Rathinavelu Sokkalingam (a1), Veerappan Muthupandi (a1), Katakam Sivaprasad (a1) and Konda Gokuldoss Prashanth (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.