Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T14:37:28.149Z Has data issue: false hasContentIssue false

Disordering and amorphization of L12-type alloys by mechanical attrition

Published online by Cambridge University Press:  31 January 2011

T. Benameur
Affiliation:
LTPCM-CNRS UA29, Institut National Polytechnique de Grenoble, D.U., BP75, 38402 St. Martin d'Hères, France
A.R. Yavari
Affiliation:
LTPCM-CNRS UA29, Institut National Polytechnique de Grenoble, D.U., BP75, 38402 St. Martin d'Hères, France
Get access

Abstract

X-ray diffraction patterns obtained during the grinding of Ni3Ge and Ni3Al alloys which at equilibrium exhibit the L12 ordered fcc structures show the emergence of a nanocrystalline structure and transformation to the disordered fcc form but little amorphization. Furthermore, the non-L12 Al2Pt alloy which also has a more strongly negative heat of mixing is easier to amorphize than the Ni3Ge and Ni3Al with L12 superstructure. This is in contrast to the Zr3Al compound (also L12-type) for which a short milling time is sufficient for obtaining complete amorphization. Variations in the aptitudes toward amorphization of the three L12-type alloys under ball-milling conditions are attributed in part to the differences in the lattice stability terms of their disordered fcc phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Okamoto, P.R., Rehn, L.E., Pearson, J., Bahdra, R., and Grimsditch, M., J. Less-Comm. Met. 231, 140 (1988).Google Scholar
2Meng, W.J., Okamoto, P.R., Thompson, L.J., Kestel, B.J., and Rehn, L.E., Appl. Phys. Lett. 53, 1820 (1988).CrossRefGoogle Scholar
3Bordeaux, F. and Yavari, A.R., J. Appl. Phys. 67, 2385 (1990).CrossRefGoogle Scholar
4Weeber, A.W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
5Benameur, T., Yavari, A.R., Malagelada, J., and Baro, M.D., in Ordering and Disordering, edited by Yavari, A. R. (Elsevier Applied Science, 1992), pp. 317327.CrossRefGoogle Scholar
6Giallanella, S., Newcomb, S. B., and Cahn, R. W., in Ordering and Disordering, edited by Yavari, A. R. (Elsevier Applied Science, 1992), pp. 6777.CrossRefGoogle Scholar
7Giallanella, S., Yavari, A. R., and Cahn, R. W., Scripa Metall. Mater. 26, 1233 (1992).CrossRefGoogle Scholar
8Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
9Enzo, S., Sampoli, M., Cocco, G., Schiffini, L., and Battezatti, L., Philos. Mag. B59, 169 (1989).CrossRefGoogle Scholar
10Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 498 (1990).CrossRefGoogle Scholar
11.Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
12Saunders, N., “Calculated Stable and Metastable Phase Equilibrium in AlLiZr Alloys”, University of Surrey, Materials Science and Engineering Internal Report INT-MSE-016.Google Scholar
13Ma, E. and Atzmon, M., TMS Fall Meeting, to appear in J. Alloy Compounds (1991).Google Scholar
14CALPHAD 15, 317425 (1991).CrossRefGoogle Scholar
15Yavari, A.R., Giallanella, S., Benameur, T., Cahn, R.W., and Bochu, B., submitted to J. Mater. Res. February (1992).Google Scholar