Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T07:31:34.668Z Has data issue: false hasContentIssue false

Dislocations in SrTiO3 thin films grown on LaAlO3 substrates

Published online by Cambridge University Press:  31 January 2011

Y. L. Qin*
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
C. L. Jia
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
J. H. Hao
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
X. X. Xi
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author.y.qin@fz-juelich.de
Get access

Abstract

The dislocation configurations in SrTiO3 thin films grown epitaxially on LaAlO3 (100) substrates were studied by conventional and high-resolution transmission electron microscopy. Misfit dislocations had, in most cases, a Burgers vector a〈100〉 and line directions of 〈100〉 These dislocations constitute orthogonal arrays of parallel dislocations at the interface, relieving the lattice mismatch between SrTiO3 and LaAlO3. Threading dislocations were found to be the major defects in the films. Two types of threading dislocations with the Burgers vectors a〈100〉?and a〈100〉?were identified. The relations of these threading dislocations with the misfit dislocations were investigated and are discussed in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dalberth, M.J., Stauber, R.E., Price, J.C., Rogers, C.T., and Galt, D., Appl. Phys. Lett. 72, 507 (1998).CrossRefGoogle Scholar
2.Jia, Q.X., Findikoglu, A.T., Reagor, D., and Lu, P., Appl. Phys. Lett. 73, 897 (1998).CrossRefGoogle Scholar
3.Yamamichi, S., Sakuma, T., Takemura, K., and Miyasaka, Y., Jpn. J. Appl. Phys., Part 1 30, 2193 (1991).CrossRefGoogle Scholar
4.Findikoglu, A.T., Dought, C., Anlage, S.M., Li, Q., Xi, X.X., and Venkatesan, T., J. Appl. Phys. 76, 2937 (1994).CrossRefGoogle Scholar
5.Hyun, S. and Char, K., Appl. Phys. Lett. 79, 254 (2001).CrossRefGoogle Scholar
6.Matthews, J.W., Mader, S., and Light, T.B., J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
7.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
8.Matthews, J.W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
9.Stemmer, S., Streiffer, S.K., Ernst, F., and Rühle, M., Phys. Status Solidi (a) 47, 135 (1995).CrossRefGoogle Scholar
10.Dai, Z.R., Wang, Z.L., Duan, X.F., and Zhang, J., Appl. Phys. Lett. 68, 3093 (1996).CrossRefGoogle Scholar
11.Langjahr, P.A., Lange, F.F., Wagner, T., and Rühle, M., Acta Mater. 46, 773 (1998).CrossRefGoogle Scholar
12.Jia, C.L., Siegert, M., and Urban, K., Acta Mater. 49, 2783 (2001).CrossRefGoogle Scholar
13.Suzuki, T., Nishi, Y., and Fujimoto, M., Philos. Mag. A 79, 2461 (1999).CrossRefGoogle Scholar
14.Ryen, L., Olsson, E., Madsen, L.D., Johnson, C.N., Wang, X., Jacobsen, S.N., Helmersson, U., Rudner, S., and Wernlund, L-D., Microelectronic Eng. 29, 309 (1995).Google Scholar
15.Ryen, L., Olsson, E., Madsen, L.D., Johnson, C.N.L., Wang, X., Jacobsen, S.N., Helmersson, U., Wernlund, L-D., and Rudner, S., in Epitaxial Oxide Thin Films II, edited by Speck, J.S., Fork, D.K., Wolf, R.W., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1995), p. 369.Google Scholar
16.Ryen, L., Olsson, E., Madsen, L.D., Wang, X., Edvardsson, C.N.L., Jacobsen, S.N., Helmersson, U., Rudner, S., and Wernlund, L-D., J. Appl. Phys. 83, 4884 (1998).Google Scholar
17.Li, H.C., Si, W.D., Wang, R.L., Xuan, Y., Liu, B.T., and Xi, X.X., Mater. Sci. Eng. B 56, 218 (1998).CrossRefGoogle Scholar
18.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and Xi, X.X., J. Appl. Phys. 89, 5653 (2001).CrossRefGoogle Scholar
19.Frank, F.C., Physica 15, 131 (1949).Google Scholar
20.Takeuchi, S., Suzuki, K., Ichihara, M., and Suzuki, T., Lattice Defects in Ceramics, Jpn. J. Appl. Phys., Series No. 2 (The Japan Society of Applied Physics, Tokyo, Japan, 1989), p. 17.Google Scholar
21.Nishigaki, J., Kuroda, K., and Saka, H., Phys. Status Solidi (a) 128, 319 (1991).CrossRefGoogle Scholar
22.Mao, Z. and Knowles, K.M., Philos. Mag. A 73, 699 (1996).CrossRefGoogle Scholar
23.Doukhan, N. and Doukhan, J.C., Phys. Chem. Minerals 13, 403 (1986).CrossRefGoogle Scholar
24.Matthews, J.W., in Dislocations in Solids, Chap. 7, edited by Nabarro, F.R.N. (North-Holland, Amsterdam, The Netherlands, 1979).Google Scholar
25.Wang, Y., Poirier, J-P., and Liebermann, R.C., Phys. Chem. Minerals 16, 630 (1989).CrossRefGoogle Scholar
26.Marée, P.M.J., Barbour, J.C., Veen, J.F. van der, Kavanagh, K.L., Bulle-Lieuwma, C.W.T., and Viegers, M.P.A., J. Appl. Phys. 62, 4413 (1987).CrossRefGoogle Scholar
27.Suzuki, T. and Fujimoto, M., J. Appl. Phys. 89, 5622 (2001).CrossRefGoogle Scholar
28.Qin, Y.L., Jia, C.L., Urban, K., Hao, J.H., and Xi, X.X. (unpublished).Google Scholar