Skip to main content Accessibility help
×
Home

Dislocation spreading and ductile–to-brittle transition in post-irradiated ferritic grains: Investigation of grain size and grain orientation effect by means of 3D dislocation dynamics simulations

  • Yang Li (a1), Christian Robertson (a2), Xianfeng Ma (a3) and Biao Wang (a3)

Abstract

Post-irradiation plastic strain spreading in ferritic grains is investigated by means of three-dimensional dislocation dynamics simulations, whereby dislocation-mediated plasticity mechanisms are analyzed in the presence of various disperse defect populations, for different grain size and orientation cases. Each simulated irradiation condition is then characterized by a specific “defect-induced apparent straining temperature shift” (ΔDIAT) magnitude, reflecting the statistical evolutions of dislocation mobility. It is found that the calculated ΔDIAT level closely matches the ductile-to-brittle transition temperature shift (ΔDBTT) associated with a given defect dispersion, characterized by the (average) defect size D and defect number density N. The noted ΔDIAT/ΔDBTT correlation can be explained based on plastic strain spreading arguments and applicable to many different ferritic alloy compositions, at least within the range of simulation conditions examined herein. This systematic study represents one essential step toward the development of a fully predictive, dose-dependent fracture model, adapted to polycrystalline ferritic materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dislocation spreading and ductile–to-brittle transition in post-irradiated ferritic grains: Investigation of grain size and grain orientation effect by means of 3D dislocation dynamics simulations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dislocation spreading and ductile–to-brittle transition in post-irradiated ferritic grains: Investigation of grain size and grain orientation effect by means of 3D dislocation dynamics simulations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dislocation spreading and ductile–to-brittle transition in post-irradiated ferritic grains: Investigation of grain size and grain orientation effect by means of 3D dislocation dynamics simulations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to these authors. e-mail: yang.li@cea.fr

References

Hide All
1.Bloom, E.E.: The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258, 717 (1998).
2.Matijasevic, M., Lucon, E., and Almazouzi, A.: Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C. J. Nucl. Mater. 377, 101108 (2008).
3.Matijasevic, M., Van Renterghem, W., and Almazouzi, A.: Characterization of irradiated single crystals of Fe and Fe–15Cr. Acta Mater. 57, 15771585 (2009).
4.Baluc, N., Gelles, D.S., Jitsukawa, S., Kimura, A., Klueh, R.L., Odette, G.R., van der Schaaf, B., and Yu, J.: Status of reduced activation ferritic/martensitic steel development. J. Nucl. Mater. 367, 3341 (2007).
5.Hishinuma, A., Kohyama, A., Klueh, R.L., Gelles, D.S., and Ehrlich, K.: Current status and future R & D for reduced-activation ferritic/martensitic steels. J. Nucl. Mater. 258, 193204 (1998).
6.Nikolaev, Y.A., Nikolaeva, A.V., and Shtrombakh, Y.I.: Radiation embrittlement of low-alloy steels. Int. J. Pressure Vessels Piping 79, 619636 (2002).
7.Konstantinovic, M.J., Rebterghem, W., Matjasevic, M., Minov, B., Lambrecht, M., Toyama, T., Chiapetto, M., and Maleraba, L.: Mechanical and microstructural properties of neutron irradiated Fe–Cr–C alloys. Int. J. Energy Res. 01, 29882994 (2016).
8.Hein, H., Keim, E., May, J., and Schnabel, H.: Some Recent Research Results and Their Implications for RPV Irradiation Surveillance under Long Term Operation, IAEA Technical Meeting on Degradation of Primary Components of Pressurized Water Cooled Nuclear Power Plants, 5–8 November 2013, Vienna, Austria.
9.Hintsala, E., Teresi, C., Wagner, A.J., Mkhoyan, K.A., and Gerberich, W.: Fracture transitions in iron: Strain rate and environmental effect. J. Mater. Res. 29, 15131521 (2014).
10.Yoo, H., Lee, N., Ham, T., and Seo, J.: Methodology for analyzing risk at nuclear facilities. Ann. Nucl. Energy 81, 213218 (2015).
11.Ballesteros, A., Alstadt, E., Gillemot, F., Hein, H., Wagemans, J., Rouden, J., Barthelmes, J., Wilford, K., Serrano, M., Brumovsky, M., Chaouadi, R., and Ortner, S.: Monitoring radiation embrittlement during life extension periods. Nucl. Eng. Des. 267, 197206 (2014).
12.Altstad, E., Keim, E., Hein, H., Serrano, M., Bergner, F., Viehrig, H.W., Ballesteros, A., Chaouadi, R., and Wilford, K.: FP7 Project LONGLIFE: Overview of results and implications. Nucl. Eng. Des. 278, 753757 (2014).
13.Diaz-Fuentes, M., Iza-Mendia, A., and Gutierrez, I.: Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior. Metall. Mater. Trans. A 34, 25052516 (2003).
14.Meslin, E., Lambrecht, M., Hernandez-Mayoral, M., Bergner, F., Malerba, L., Pareige, P., Radiguet, B., Barbu, A., Gómez-Briceño, D., Ulbricht, A., and Almazouzi, A.: Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses. J. Nucl. Mater. 406, 7383 (2010).
15.Heintze, C., Ulbricht, A., Bergner, F., and Eckerlebe, H.: SANS investigation of neutron-irradiated Fe–Cr alloys. J. Phys.: Conf. Ser. 247, 012035 (2010).
16.Budiman, A.S., Tamura, N., Valek, B.C., Gadre, K., Maiz, J., Spolenak, R., Nix, W.D., and Patel, J.R.: Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron X-ray microdiffraction. Appl. Phys. Lett. 88, 233515 (2006).
17.Khoo, C.Y., Liu, H., Sasangka, W., Made, R.I., Tamura, N., Kunz, M., Budiman, A.S., Gan, C.L., and Thompson, C.V.: Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films. J. Mater. Sci. 51, 18641872 (2016).
18.Tippabhotla, S.K., Radchenko, I., Song, W.J.R., Illya, G., Handara, V., Kunz, M., Tamura, N., Tay, A.A.O., and Budiman, A.S.: From cells to laminate: Probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations. Prog. Photovoltaics Res. Appl. 25, 791809 (2017).
19.Li, Y. and Robertson, C.: Irradiation defect dispersions and effective dislocation mobility in strained ferritic grains: A statistical analysis based on 3D dislocation dynamics simulations. J. Nucl. Mater. 504, 8493 (2018).
20.Li, Y., Robertson, C., Ma, X., and Wang, B.: Investigation of radiation temperature and straining temperature effects on the screw dislocation mobility evolution in irradiated ferritic grains using 3D dislocation dynamics. In TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings (Springer, Cham, 2019); pp. 13351344.
21.Birtcher, R.C., Kirk, M.A., Furuya, K., Lumpkin, G.R., and Ruault, M.O.: In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 20, 16541683 (2005).
22.Robach, J.S., Robertson, I.M., Wirth, B.D., and Arsenlis, A.: In situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83, 955967 (2003).
23.Bacon, D.J. and Osetsky, Y.N.: Modelling dislocation–obstacle interactions in metals exposed to an irradiation environment. Mater. Sci. Eng., A 400, 353361 (2005).
24.de la Rubia, T.D., Zbib, H.M., Kraishin, T.A., Wirth, B.D., Victoria, M., and Caturla, M.J.: Multiscale modelling of plastic flow localization in irradiation materials. Nature 406, 871874 (2000).
25.Kwon, J., Kwon, S.C., and Hong, J.H.: Prediction of radiation hardening in reactor pressure vessel steel based on a theoretical model. Ann. Nucl. Energy 30, 15491559 (2003).
26.Ghoniem, N.M., Tong, S.H., Singh, B.N., and Sun, L.Z.: On dislocation interaction with radiation-induced defect clusters and plastic flow localization in fcc metals. Philos. Mag. A 81, 27432764 (2001).
27.Chaussidon, J., Robertson, C., Rodney, D., and Fivel, M.: Dislocation dynamics simulations of plasticity in Fe laths at low temperature. Acta Mater. 56, 54665476 (2008).
28.Gururaj, K., Robertson, C., and Fivel, M.: Post-irradiation plastic deformation in bcc Fe grains investigated by means of 3D dislocation dynamics simulations. J. Nucl. Mater. 459, 194204 (2015).
29.Klueh, R.L., Sokolov, M.A., Shiba, K., Miwa, Y., and Robertson, J.P.: Embrittlement of reduced-activation ferritic/martensitic steels irradiated in HFIR at 300 °C and 400 °C. J. Nucl. Mater. 283, 478482 (2000).
30.Hirsch, P.B. and Roberts, S.G.: Modelling plastic zones and the brittle–ductile transition. Philos. Trans. R. Soc., A 355, 1991 (1997).
31.Tanaka, M., Tarleton, E., and Roberts, S.G.: The brittle–ductile transition in single-crystal iron. Acta Mater. 56, 51235129 (2008).
32.Viehrig, H-W., Boehmert, J., and Dzugan, J.: Some issues by using the master curve concept. Nucl. Eng. Des. 212, 115124 (2002).
33.Bohmert, J. and Muller, G.: Thermally activated deformation of irradiated reactor pressure vessel steel. J. Nucl. Mater. 301, 227232 (2002).
34.Hahn, E.N. and Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101134 (2015).
35.Robertson, C. and Gururaj, K.: Plastic deformation of ferritic grains in presence of ODS particles and irradiation-induced defect clusters: A 3D dislocation dynamics simulation study. J. Nucl. Mater. 415, 167178 (2011).
36.Chaussidon, J., Robertson, C., and Fivel, M.: Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations. Modell. Simul. Mater. Sci. Eng. 18, 025003 (2010).
37.Louchet, F. and Saka, H.: Comments on the paper: Observation of dislocation dynamics in the electron microscope by B.W. Lagow et al. Mater. Sci. Eng., A 352, 7175 (2003).
38.Gururaj, K., Robertson, C., and Fivel, M.: Channel formation and multiplication in irradiated FCC metals: A 3D dislocation dynamics investigation. Philos. Mag. 95, 13681389 (2015).
39.Robertson, C.F., Obrtlik, K., and Marini, B.: Dislocation structures in 16MND5 pressure vessel steel strained in uniaxial tension at different temperatures from 196 °C up to 25 °C. J. Nucl. Mater. 366, 5869 (2007).
40.Rieth, M., Dafferner, B., and Rohrig, H.D.: Embrittlement behaviour of different international low activation alloys after neutron irradiation. J. Nucl. Mater. 258, 11471152 (1998).
41.Rieth, M., Dudarev, S.L., Gonzale de Vicente, S.M., Aktaa, J., Ahlgren, T., Antusch, S., Armstrong, D.E.J., Balden, M., Baluc, N., Barthe, M.-F., Basuki, W.W., Battabyal, M., Becquart, C.S., Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J.B., De Backer, A., Domain, C., Gaganidze, E., García-Rosales, C., Gibson, J., Gilbert, M.R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., Lindig, S., Linke, J., Linsmeier, C., López-Ruiz, P., Maier, H., Matejicek, J., Mishra, T.P., Muhammed, M., Muñoz, A., Muzyk, M., Nordlund, K., Nguyen-Manh, D., Opschoor, J., Ordás, N., Palacios, T., Pintsuk, G., Pippan, R., Reiser, J., Riesch, J., Roberts, S.G., Romaner, L., Rosiński, M., Sanchez, M., Schulmeyer, W., Traxler, H., Ureña, A., van der Laan, J.G., Veleva, L., Wahlberg, S., Walter, M., Weber, T., Weitkamp, T., Wurster, S., Yar, M.A., You, J.H., and Zivelonghi, A.: Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432, 482500 (2013).
42.Nishiyama, Y., Fukaya, K., Suzuki, M., and Eto, M.: Irradiation embrittlement of 2 1/4Cr–1Mo steel at 400 °C and its electrochemical evaluation. J. Nucl. Mater. 258–263, 11871192 (1998).
43.Porollo, S.I., Dvoriashin, A.M., Vorobyev, A.N., and Konobeev, Y.V.: The microstructure and tensile properties of Fe–Cr alloys after neutron irradiation at 400 C to 5.5–7.1 dpa. J. Nucl. Mater. 256, 247253 (1998).
44.Ghoniem, M.M. and Hammad, F.H.: Pressure vessel steels: Influence of chemical composition on irradiation sensitivity. Int. J. Pressure Vessels Piping 74, 189 (1997).
45.Kuleshova, E.A., Gurovich, B.A., Shtrombakh, Y.I., Erak, D.Y., and Lavrenchuk, O.V.: Comparison of microstructural features of radiation embrittlement of VVER-440 and VVER-1000 reactor pressure vessel steels. J. Nucl. Mater. 300, 127140 (2002).
46.Kocik, J., Keilova, E., Cizek, J., and Prochazka, I.: TEM and PAS study of neutron irradiated VVER-type RPV steels. J. Nucl. Mater. 303, 5264 (2002).
47.Jia, X. and Dai, Y.: Microstructure in martensitic steels T91 and F82H after irradiation in SINQ target-3. J. Nucl. Mater. 318, 207214 (2003).
48.Bruemmer, S.M., Simonen, E.P., Scrott, P.M., Andresen, P.L., Was, G.S., and Nelson, J.L.: Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 274, 299314 (1999).
49.Forget, P., Marini, B., and Vincent, L.: Application of local approach to fracture of an RPV steel: Effect of the crystal plasticity on the critical carbide size. Procedia Struct. Integr. 2, 16601667 (2016).
50.Anderson, T.L., Steinstra, D., and Dodds, R.H.: A theoretical framework for addressing fracture in the ductile–brittle transition region. Fract. Mech. 24, 185 (1994).
51.Vincent, L., Libert, M., Marini, B., and Rey, C.: Towards a modelling of RPV steel brittle fracture using crystal plasticity computations on polycrystalline aggregates. J. Nucl. Mater. 406, 9196 (2010).
52.Liber, M., Rey, C., Vincent, L., and Marini, B.: Temperature dependent poly-crystal model application to bainitic steel behavior under tri-axial loading in the ductile–brittle transition. Int. J. Solids Struct. 48, 21962208 (2011).
53.Forget, P., Marini, B., Parrot, A., and Todeschini, P.: Numerical evaluation of the ability of the master curve approach to described the effect of irradiation on the brittle fracture toughness of RPV steels. In Local Approach to Fracture, Besson, J., Moinereau, D., and Steglich, D., eds. (Ecole des Mines de Paris, Paris, 2006); pp. 297303.
54.Sokolov, M.A., Nanstad, R.K., and Miller, M.K.: Fracture toughness and atom probe characterization of a highly embrittled RPV weld. J. ASTM Int. 1, 115 (2004).
55.Was, G.S.: Fundamentals of Radiation Materials Science, 1st ed. (Springer Berlin Heidelberg, New York, 2007).
56.Yamaguchi, M.: First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. Iron (Fe)-solute (B, C, P, and S) systems. Metall. Mater. Trans. A 42, 319329 (2011).
57.Verdier, M., Fivel, M., and Groma, I.: Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications. Modell. Simul. Mater. Sci. Eng. 6, 755 (1998).
58.Tang, M., Kubin, L.P., and Canova, G.R.: Dislocation mobility and the mechanical response of bcc single crystals: A mesoscopic approach. Acta Mater. 46, 32213235 (1998).
59.Caillard, D. and Martin, J.L.: Thermally Activated Mechanisms in Crystal Plasticity, 1st ed. (Elsevier, Kidlington, 2003).
60.Gilbert, M.R., Schuck, P., Sadigh, B., and Marian, J.: Free energy generalization of the peierls potential in iron. Phys. Rev. Lett. 111, 095502 (2013).
61.Weinberger, C.R., Boyce, B.L., and Battaile, C.C.: Slip planes in bcc transition metals. Int. Mater. Rev. 58, 296314 (2013).
62.Alshits, V.I. and Indenbom, V.L.: Mechanisms of dislocation drag. In Dislocations in Solids, Vol. 7, Nabarro, F.R.N., ed. (Elsevier, Amsterdam, 1986); ch. 34, pp. 43111.
63.Gurrutxaga-Lerma, B., Shehadeh, M.A., Balint, D.S., Dini, D., Chen, L., and Eakins, D.E.: The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int. J. Plast. 96, 135155 (2017).
64.Gilbert, M.R., Queyreau, S., and Marian, J.: Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics. Phys. Rev. B 84, 174103 (2011).
65.Po, G., Cui, Y., Rivera, D., Cereceda, D., Swinburne, T.D., Marian, J., and Ghoniem, N.: A phenomenological dislocation mobility law for bcc metals. Acta Mater. 119, 123135 (2016).
66.Garcia-Rodriguez, D.: Optimisation d'un code de dynamique des dislocations pour l'étude de la plasticité des aciers ferritiques. Doctoral dissertation, Université de Grenoble, Grenoble, 2011.
67.Jiang, M., Devincre, B., and Monnet, G.: Effects of the grain size and shape on the flow stress: A dislocation dynamics study. Int. J. Plast. 113, 111124 (2019).
68.Terentyev, D., Bacon, D.J., and Osetsky, Y.N.: Reactions between a 1/2 〈111〉 screw dislocation and 〈100〉 interstitial dislocation loops in alpha-iron modelled at atomic scale. Philos. Mag. 90, 10191033 (2010).
69.Terentyev, D., Grammatikopoulos, P., Bacon, D.J., and Osetsky, Y.N.: Simulation of the interaction between an edge dislocation and a 〈100〉 interstitial dislocation loop in α-iron. Acta Mater. 56, 50345046 (2008).
70.Li, Y., Robertson, C., Shukeir, M., and Dupuy, L.: Screw dislocation interaction with irradiation defect-loops in α-iron: Evaluation of cross-slip effect using dislocation dynamics simulations. Modell. Simul. Mater. Sci. Eng. 26, 055009 (2018).
71.Li, Y., Robertson, C., Shukeir, M., and Dupuy, L.: Screw dislocation interaction with irradiation defect-loops in α-iron: Evaluation of loop-induced stress field effect using dislocation dynamics simulations. Nucl. Instrum. Methods Phys. Res., Sect. B (2019). (in press) https://doi.org/10.1016/j.nimb.2019.01.032.
72.Swinburne, T.D. and Dudarev, S.L.: Kink-limited Orowan strengthening explains the brittle to ductile transition of irradiated and unirradiated bcc metals. Phys. Rev. Mater. 2, 073608 (2018).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed