Skip to main content Accessibility help
×
Home

Dislocation emission at ledges on cracks

  • S.J. Zhou (a1) and Robb Thomson (a1)

Abstract

In this paper, we propose that, depending on their height, ledges on cracks can be efficient sources of dislocations at loadings well below the critical loading for homogeneous emission. Detailed 3-D elastic calculations are presented supporting this proposition. There are two configurations for emission: one which blunts the crack, and one we call a jogging configuration. By our calculations, the blunting configuration should be the more efficient source; however, jogging dislocations are more frequently observed, experimentally. We find that the ledge is only a finite source of dislocations, in the sense that the ledge height decreases as the dislocations are emitted. The atomic configuration at the ledge is composed of finite lengths of real dislocations, which is the reason why such dislocations can be emitted easier than homogeneously produced dislocations. The stresses at the ledge tip produce a cloud of bound dislocations near the ledge, pinned at the ledge ends, so that the ledge crack configuration becomes delocalized. Delocalization of the pileup dislocations in the jogging direction may explain why the jogging dislocations are more frequently seen. Implications for dislocation free zones and ductile transitions are discussed.

Copyright

References

Hide All
1Rice, J. R. and Thomson, R. M., Philos. Mag. 29, 73 (1974 ).
2Gilman, J. J., Knudsen, C., andWalsh, W. P., J. Appl. Phys. 29, 601 (1958).
3St. John, C. F., Philos. Mag. 32, 1193 (1975).
4Michot, G. and George, A., Scripta Metall. 22, 1043 (1988) and earlier references.
5Brede, M. and Haasen, P., Acta Metall. 36, 2003 (1988).
6Hirsch, P. B., Roberts, S. G., and Samuels, J., Proc. Roy. Soc. A 421, 25 (1989)
Samuels, J. and Roberts, S. G., Proc. Roy. Soc. A 421, 25 (1989) p. 1.
7Chiao, Y-H. and Clarke, D. R., Acta Metall. 37, 203 (1989).
8Lawn, B. R., Hockey, B. J., andWiederhorn, S. M., J. Mater. Sci. 15, 1207 (1980).
9Chia, K. Y. and Burns, S. J., Scripta Metall. 18, 467 (1984). See also “Fracture: Measurement of Localized Deformation by Novel Techniques”, edited by Gerberich, W. W. and Davidson, D. L., AIME Conference Proceedings, 1985.
10Gerberich, W. (private communication).
11Ohr, S. M., J. Mater. Sci. Eng. 72, 1 (1985).
12Haasen, P., Atomistics of Fracture, NATO Conf. Series, Series VI: Matls. Sciences (Plenum Press, New York, 1983), p. 707.
13Argon, A., Acta Metall. 35, 185 (1987).
14Zhang, T-Y. and Li, J. C. M., Mater. Sci. Eng. (in press).
15Anderson, P. M. and Rice, J. R., J. Mech. Phys. Sol. 35, 743 (1987).
16Gilman, J. J., J. Appl. Phys. 27, 1262 (1956).
17Lin, I-H. and Thomson, R. M., J. Mater. Res. 1, 73 (1986).
18 See the article by Bilby, B. A. and Eshelby, J. in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1986), Vol. 1, p. 99.
19Lin, I-H. and Thomson, R. M., Acta Metall. 34, 187 (1986).
20Wan, K-T., Aimard, N., Lathabai, S., Horn, R. G., andLawn, B. R., J. Mater. Res. 5, 172 (1990).
21 See Hirth, J. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1983), p. 99.
22Gao, H., J. Mech. Phys. Sol. 37, 133 (1989)
Gao, H. and Rice, J., J. Mech. Phys. Sol. 37, p. 155 (1989).
23Thomson, R., Solid State Physics, edited by Turnbull, D. and Ehrenreich, H. (Academic Press, New York, 1987), Vol. 39, p. 1.
24Chang, S. J. and Ohr, S. M., J. Appl. Phys. 52, 7174 (1981).
25Dewald, D. K., Lee, T. C., Robertson, I. M., andBirnbaum, H. K., Scripta Metall. 23, 1307 (1989).
26Narita, N., Higashida, K., and Kitano, S., Scripta Metall. 27, 1273 (1987).

Dislocation emission at ledges on cracks

  • S.J. Zhou (a1) and Robb Thomson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed