Skip to main content Accessibility help
×
Home

Direct observation of indentation deformation and cracking of silicate glasses

  • Satoshi Yoshida (a1), Mitsuo Kato (a2), Akiko Yokota (a2), Shohei Sasaki (a3), Akihiro Yamada (a4), Jun Matsuoka (a4), Naohiro Soga (a5) and Charles R. Kurkjian (a6)...

Abstract

Indentation deformation of glass under a sharp diamond indenter causes cracking during and after a loading–unloading cycle. To get a deeper insight into the indentation cracking in glass, it is critical to understand the elastic and inelastic deformation behavior of glass under the indenter. In this study, in situ observations during Vickers indentations are carried out for silica, soda-lime, and lead–silicate glasses. It is found that the true contact area during indentation is different from the area estimated from the contact depth and the indenter geometry, and that the ridges of a Vickers indenter affect the contact shape during indentation. The contact region of silicate glasses under a Vickers indenter is not a regular square but a concave square. This results in edge cracking during indentation. It is concluded that the contact shape and the deformation mechanism of glass under the indenter are closely related to its cracking behaviors.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yoshida@mat.usp.ac.jp

References

Hide All
1. Ernsberger, F.M.: Role of densification in deformation of glasses under point loading. J. Am. Ceram. Soc. 51, 545 (1968).
2. Peter, K.W.: Densification and flow phenomena of glass in indentation. J. Non-Cryst. Solids 5, 103 (1970).
3. Lim, Y.Y. and Chaudhri, M.M.: Indentation of elastic solids with a rigid Vickers pyramidal indenter. Mech. Mater. 38, 1213 (2006).
4. Deuschle, J., Deuschle, H.M., Enders, S., and Arzt, E.: Contact area determination in indentation testing of elastomers. J. Mater. Res. 24, 736 (2009).
5. Lawn, B.R. and Marshall, D.B.: Hardness, toughness and brittleness: An indentation analysis. J. Am. Ceram. Soc. 62, 347 (1979).
6. Wada, M., Furukawa, H., and Fujita, K.: Crack resistance of glass on Vickers indentation. Proc. Xth Int. Congr. Glass 11, 39 (1974).
7. Arora, A., Marshall, D.B., Lawn, B.R., and Swain, M.V.: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 (1979).
8. Sehgal, J. and Ito, S.: Brittleness of glass. J. Non-Cryst. Solids 253, 126 (1999).
9. Sehgal, J. and Ito, S.: A new low-brittleness glass in the soda-lime-silica glass family. J. Am. Ceram. Soc. 81, 2485 (1998).
10. Chiang, S.S., Marshall, D.B., and Evans, A.G.: The response of solids to elastic/plastic indentation I. Stresses and residual stresses. J. Appl. Phys. 53, 298 (1982).
11. Yoffe, E.H.: Elastic stress fields causes by indenting brittle materials. Philos. Mag. A 46, 617 (1982).
12. Yoshida, S., Sangleboeuf, J-C., and Rouxel, T.: Quantitative evaluation of indentation-induced densification in glass. J. Mater. Res. 20, 3404 (2005).
13. Kato, Y., Yamazaki, H., Yoshida, S., and Matsuoka, J.: Effect of densification on crack initiation under Vickers indentation test. J. Non-Cryst. Solids 356, 1768 (2010).
14. Sellappan, P., Rouxel, T., Celarie, F., Becker, E., Houizot, P., and Conradt, R.: Composition dependence of indentation deformation and indentation cracking in glass. Acta. Mater. 61, 5949 (2013).
15. Marshall, D.B. and Lawn, B.R.: Residual stress effects in sharp-contact cracking: I. Indentation fracture mechanics. J. Mater. Sci. 14, 2001 (1979).
16. Lawn, B.R., Dabbs, T.P., and Fairbanks, C.J.: Kinetics of shear-activated indentation crack initiation in soda-lime glass. J. Mater. Sci. 18, 2785 (1983).
17. Cook, R.F. and Pharr, G.M.: Direct observation of indentation cracking in glass and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).
18. Cook, R.F. and Liniger, E.G.: Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096 (1993).
19. Tandon, R. and Cook, R.F.: Cone crack nucleation at sharp contacts. J. Am. Ceram. Soc. 75, 2877 (1992).
20. Cook, R.F., Liniger, E.G., and Pascucci, M.R.: Indentation fracture of polycrystalline cubic materials. J. Hard Mater. 5, 190 (1994).
21. Thurn, J., Morris, D.J., and Cook, R.F.: Depth-sensing indentation at macroscopic dimensions. J. Mater. Res. 17, 2679 (2002).
22. Morris, D.J. and Cook, R.F.: In-situ observation of cube-corner indentation of soda-lime glass and fused silica. J. Am. Ceram. Soc. 87, 1494 (2004).
23. Sakai, M., Hakiri, N., and Miyajima, T.: Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales. J. Mater. Res. 21, 2298 (2006).
24. Miyajima, T. and Sakai, M.: Optical indentation microscopy—a new family of instrumented indentation testing. Philos. Mag. 86, 5729 (2006).
25. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
26. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
27. Kurkjian, C.R., Kammlott, G.W., and Chaudhri, M.M.: Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid nitrogen temperature. J. Am. Ceram. Soc. 78, 737 (1995).
28. Kurkjian, C.R. and Allameh, S.: Unpublished work (2001).
29. Gross, T.M. and Tomozawa, M.: Crack-free high load Vickers indentation of silica glass. J. Non-Cryst. Solids 354, 5567 (2008).
30. Chaudhri, M.M. and Yoffe, E.H.: The area of contact between a small sphere and a flat surface. Philos. Mag. A 44, 667 (1981).
31. Muller, A.M. and Green, D.J.: Elastic indentation response of float glass surfaces. J. Am. Ceram. Soc. 93, 209 (2010).
32. Sakai, M.: Elastic recovery in the unloading process of pyramidal microindentation. J. Mater. Res. 18, 1631 (2003).
33. Giannakopoulos, A.E. and Suresh, S.: Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).
34. Kato, Y., Yamazaki, H., Itakura, S., Yoshida, S., and Matsuoka, J.: Load dependence of densification in glass during Vickers indentation test. J. Ceram. Soc. Jpn. 119, 110 (2011).
35. Rouxel, T., Ji, H., Hammouda, T., and Moréac, A.: Poisson's ratio and the densification of glass under high pressure. Phys. Rev. Lett. 100, 225501 (2008).
36. Lawn, B.R. and Howes, V.R.: Elastic recovery at hardness indentations. J. Mater. Sci. 16, 2745 (1981).
37. Yoshida, S., Sangleboeuf, J-C., and Rouxel, T.: Indentation-induced densification of soda-lime silicate glass. Int. J. Mater. Res. 98, 361 (2007).
38. Abe, T.: The mechanical behaviour of glass near its yield point. In Symposium sur la resistance mecanique du verre et les moyens de l'ameliorer Union scientifique continentale du verre. Charleroi, Belgium, 1962; p. 551.
39. Baikova, L.G., Pukh, V.P., and Talalakin, S.N.: Damages to high-strength glass in microindentation. Sov. Phys. Solid State 15, 1437 (1974).
40. Dabbs, T.P., Marshall, D.B., and Lawn, B.R.: Flaw generation by indentation in glass fibers. J. Am. Ceram. Soc. 63, 224 (1980).
41. Lathabai, S., Rödel, J., Lawn, B.R., and Dabbs, T.P.: Fracture mechanics model for subthreshold indentation flaws: I. Equilibrium fracture. J. Mater. Sci. 26, 2157 (1991).
42. Taylor, A.T. and Matthewson, M.J.: The fatigue behavior of Vickers indentations in fused silica optical fibers. In Proceedings of the International Wire & Cable Symposium. IWCS Inc., Eatontown, NJ, 1997; p. 910.
43. Wilantewicz, T.: Crack initiation behavior of optical glasses. Ph.D. Thesis, Alfred University, Alfred, NY, 2005; p. 87.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed