Skip to main content Accessibility help
×
Home

Development of tensile-compressive asymmetry free magnesium based composite using TiO2 nanoparticles dispersion

  • Syed Fida Hassan (a1), Nasirudeen Olalekan Ogunlakin (a1), Nasser Al-Aqeeli (a1), Saheb Nouari (a1), Mirza Murtuza Ali Baig (a1) and Faheemuddin Patel (a1)...

Abstract

In this present study, different volume percentages of titanium dioxide nanoparticles were added as dispersions in commercially pure magnesium using the blend-press-sinter powder metallurgy process followed by hot extrusion. The physically blended titanium dioxide nanoparticles dispersoid induced a significant grain refinement in the extruded magnesium matrix. Characterization of the mechanical properties revealed that the increasing volume percentage of titanium oxide nanoparticles dispersion was effective in enhancing the ductility of magnesium without disturbing the strength under tensile loading and enhancing the strength of magnesium without disturbing the ductility under compressive loading. The dominating deformation mechanism in pure magnesium was the dislocation slip, which was subdued by the tensile twinning deformation mechanism due to the increasing presence of titanium dioxide dispersion. The effect of shift in the dominating deformation mechanism was displayed by the elimination of tensile-compressive asymmetry in magnesium when dispersed with 1 vol% of titanium dioxide nanoparticles.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: sfhassan@kfupm.edu.sa or itsforfida@gmail.com

Footnotes

Hide All

Contributing Editor: Yang-T. Cheng

Footnotes

References

Hide All
1. Amaravathy, P., Sathyanarayanan, S., Sowndarya, S., and Rajendran, N.: Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceram. Int. 40, 6617 (2014).
2. Nagarajan, S. and Rajendran, N.: Surface characterization and electrochemical behavior of porous titanium dioxide coated 316L stainless steel for orthopedic applications. Appl. Surf. Sci. 255, 3927 (2009).
3. Suker, D.K. and Albadran, R.M.: Cytotoxic effects of titanium dioxide nanoparticles on rat embryo fibroblast ref-3 cell line in vitro. Eur. J. Exp. Biol. 3, 354 (2013).
4. Wang, J. and Lung, Y.F.: Injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. Int. J. Mol. Sci. 15, 22258 (2014).
5. Ravichandran, M. and Dineshkumar, S.: Synthesis of Al–TiO2 composites through liquid powder metallurgy route. SSRG Int. J. Mech. Eng. 1, 12 (2014).
6. Meenashisundaram, G.K., Nai, M.H., Almajid, A., and Gupta, M.: Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des. 65, 104 (2015).
7. Hassan, S.F., Nasirudeen, O.O., Al-Aqeeli, N., Saheb, N., Patel, F., and Baig, M.M.A.: Processing, microstructure and mechanical properties of a TiO2 nanoparticles reinforced magnesium for biocompatible application. Metall. Res. Technol. 114, 214 (2017).
8. Tomohiro, Y., Threrujirapapong, T., Hisashi, I., and Katsuyoshi, K.: Microstructural and mechanical properties of Ti composite reinforced with TiO2 additive particles. Trans. JWRI 38, 37 (2009).
9. Ranganath, G., Sharma, S.C., Krishna, M., and Muruli, M.S.: A study of mechanical properties and fractography of ZA-27/titanium–dioxide metal matrix composites. J. Mater. Eng. Perform. 11, 408 (2002).
10. Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).
11. Witte, F., Hort, N., Vog, C., Cohen, S., Kainer, K.U., Willumeit, R., and Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63 (2008).
12. Hassan, S.F., Zabiullah, S., Al-Aqeeli, N., and Gupta, M.: Magnesium nanocomposite: Effect of melt dispersion of different oxides nano particles. J. Mater. Res. 31, 100 (2016).
13. Hassan, S.F.: Mg–ZrO2 nanocomposite: Relative effect of reinforcement incorporation technique. Arch. Metall. Mater. 61, 1175 (2016).
14. Hassan, S.F.: Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater. Sci. Eng., A 528, 5484 (2011).
15. Umeda, J., Kawakami, M., Kondoh, K., Ayman, E., and Imai, H.: Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649 (2010).
16. Eustathopoulos, N., Nicholas, M.G., and Drevet, B.: Wettability at High Temperatures, Vol. 3, Pregamon Materials Series (Elsevier, U.K., 1999); p. 198.
17. German, R.M.: Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, USA, 1994); p. 298.
18. Lloyd, D.J.: Particle reinforced aluminium and magnesium metal matrix composites. Int. Mater. Rev. 39, 1 (1994).
19. ASM Handbook: Properties and Selection: Non-Ferrous Alloys and Special-Purpose Materials, Vol. 2 (ASM International, Materials Park, OH, 1990); p. 1134.
20. Hosford, W.F.: The Mechanics of Crystals and Textures Polycrystals (Oxford University Press, Oxford, 1993); pp. 52102.
21. Reed-Hill, R.E. and Abbaschian, R.: Physical Metallurgy Principles, 3rd ed. (PWS Publishing Company, Boston, 1992); pp. 168203.
22. Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, MA, USA, 1975); pp. 202208.
23. Yin, D.L., Wang, J.T., Liu, J.Q., and Zhao, X.: On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy. J. Alloys Compd. 478, 789 (2009).
24. Stanford, N. and Barnett, M.R.: Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater. Sci. Eng., A 516, 226 (2009).
25. Jain, J., Poole, W.J., Sinclaira, C.W., and Gharghouri, M.A.: Reducing the tension–compression yield asymmetry in a Mg–8Al–0.5Zn alloy via precipitation. Scr. Mater. 62, 301 (2010).
26. Partridge, P.G.: Irregular twin growth and contraction in hexagonal close packed metals. Acta Metall. 13, 1329 (1965).
27. Hassan, S.F., Paramsothy, M., Yilbas, B.S., and Gupta, M.: Study of comparative effectiveness of thermally stable nano-particles on high temperature deformability of wrought AZ31 alloy. J. Mater. Res. 29, 1264 (2014).
28. Shen, J., Yin, W., Wei, Q., Li, Y., Liu, J., and An, L.: Effect of ceramic nanoparticle reinforcements on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites. J. Mater. Res. 28, 1835 (2013).
29. Cahn, R.W.: Physical Metallurgy (North-Holland Publishing Company, Netherlands, 1970); pp. 10831128.

Keywords

Development of tensile-compressive asymmetry free magnesium based composite using TiO2 nanoparticles dispersion

  • Syed Fida Hassan (a1), Nasirudeen Olalekan Ogunlakin (a1), Nasser Al-Aqeeli (a1), Saheb Nouari (a1), Mirza Murtuza Ali Baig (a1) and Faheemuddin Patel (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed