Skip to main content Accessibility help
×
Home

Determining the Instantaneous Modulus of Viscoelastic Solids Using Instrumented Indentation Measurements

  • Yang-Tse Cheng (a1), Wangyang Ni (a2) and Che-Min Cheng (a3)

Abstract

Instrumented indentation is often used in the study of small-scale mechanical behavior of “soft” matters that exhibit viscoelastic behavior. A number of techniques have recently been proposed to obtain the viscoelastic properties from indentation load–displacement curves. In this study, we examine the relationships between initial unloading slope, contact depth, and the instantaneous elastic modulus for instrumented indentation in linear viscoelastic solids using either conical or spherical indenters. In particular, we study the effects of “hold-at-the-peak-load” and “hold-at-the-maximum-displacement” on initial unloading slopes and contact depths. We then discuss the applicability of the Oliver–Pharr method (Refs. 29, 30) for determining contact depth that was originally proposed for indentation in elastic and elastic-plastic solids and recently modified by Ngan et al. (Refs. 20–23) for viscoelastic solids. The results of this study should help facilitate the analysis of instrumented indentation measurements in linear viscoelastic solids.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: yang.t.cheng@gm.comThis author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

References

Hide All
1Lee, E.H.: Stress analysis in visco-elastic bodies. Quarterly Appl. Math. 13, 183 (1955).
2Radok, J.R.M.: Visco-elastic stress analysis. Quarterly Appl. Math. 15, 198 (1957).
3Lee, E.H. and Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).
4Hunter, S.C.: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).
5Graham, G.A.C.: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27 (1965).
6Graham, G.A.C.: Contact problem in linear theory of viscoelsticity when time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).
7Yang, W.H.: Contact problem for viscoelastic bodies. J. Appl. Mech. 33, 395 (1966).
8Ting, T.C.T.: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).
9Ting, T.C.T.: Contact problems in linear theory of viscoelasticity. J. Appl. Mech. 35, 248 (1968).
10Briscoe, B.J., Fiori, L. and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D, Appl. Phys. 31, 2395 (1998).
11Larrson, P-L. and Carlsson, S.: On microindentation of viscoelastic polymers. Polym. Testing 17, 49 (1998).
12Cheng, L., Xia, X., Yu, W., Scriven, L.E. and Gerberich, W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci. B, Polym. Phys 38, 10 (2001).
13Shimizu, S., Yanagimoto, T. and Sakai, M.: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).
14Sakai, M. and Shimizu, S.: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).
15Sakai, M.: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A82, 1841 (2002).
16Oyen, M.L. and Cook, R.F.: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).
17VanLandingham, M.R.: Review of instrumented indentation. J. Res. Nat. Inst. Stand. Technol. 108, 249 (2003).
18Lu, H., Wang, B., Ma, J., Huang, G. and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Dependent Mater. 7, 189 (2003).
19Kumar, M.V.R. and Narasimhan, R.: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088 (2004).
20Feng, G. and Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).
21Ngan, A.H.W. and Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).
22Tang, B. and Ngan, A.H.W.: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).
23Ngan, A.H.W., Wang, H.T., Tang, B. and Sze, K.Y.: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831 (2005).
24Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R44, 91 (2004).
25Cheng, Y-T. and Cheng, C-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).
26Cheng, Y-T. and Cheng, C-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng., A (in press).
27Cheng, Y-T. and Cheng, C-M.: A general relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, 111914 (2005).
28Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).
29Pharr, G.M., Oliver, W.C. and Brotzen, F.R.: On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).
30Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
31Timoshenko, S.P. and Goodier, J.N.: Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).
32Love, A.E.H.: Boussinesq’s problem for a rigid cone. Quart. J. Math. 10, 161 (1939).
33Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
34Cheng, C-M. and Cheng, Y-T.: On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile. Appl. Phys. Lett. 71, 2623 (1997).
35Findley, W.N., Lai, J.S. and Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover, New York, 1976).
36Mase, G.T. and Mase, G.E.: Continuum Mechanics for Engineers , 2nd ed. (CRC, Boca Raton, FL, 1999).
37Ni, W., Cheng, Y-T., Cheng, C-M. and Grummon, D.S.: An energy based method for analyzing instrumented spherical indentation experiments. J. Mater. Res. 19, 149 (2004).

Keywords

Determining the Instantaneous Modulus of Viscoelastic Solids Using Instrumented Indentation Measurements

  • Yang-Tse Cheng (a1), Wangyang Ni (a2) and Che-Min Cheng (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed