Skip to main content Accessibility help

Determination of reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica for hydrogenseparation at high temperature

  • Yumi H. Ikuhara, Tomohiro Saito, Yukichi Sasaki, Seiji Takahashi and Tsukasa Hirayama (a1)...


The reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica (Si-O) was identified by analyzing the hydrogen adsorption behavior and the microstructure. The total amount of reversibly adsorbed hydrogen was evaluated from the total surface area of Ni and the Ni concentration in the composite. The total surface area of the Ni nanoparticles in each sample powder was calculated from the mean particle size of the Ni nanoparticles in the Si-O matrix using dark field images taken by transmission electron microscopy and high-angle annular dark-field images by scanning transmission electron microscopy. The estimated amount of reversibly adsorbed hydrogen was highly consistent with that obtained experimentally by hydrogen adsorption analysis, which suggested that reversible hydrogen adsorption occurred at the Ni/Si-O interface.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ohi, J.Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3180 (2005)
2.Schlapbach, L., Zuttel, A.Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001)
3.Singhal, S.C.Science and technology of solid-oxide fuel cells. MRS Bull. 25, 16 (2000)
4.Nenoff, T.M., Spontak, R.J., Aberg, C.M.Membranes for hydrogen purification: An important step toward a hydrogen-based economy. MRS Bull. 31, 735 (2006)
5.Ogden, J.M.Hydrogen: The fuel of the future? Phys. Today 55, 69 (2002)
6.Tsuru, T., Tsuge, T., Kubota, S., Yoshida, K., Yoshioka, T., Asaeda, M.Catalytic membrane reactor for methane steam reforming using porous silica membranes. Sep. Sci. Technol. 36, 3721 (2001)
7.Kurungot, S., Yamaguchi, T.Stability improvement of Rh/γ-Al2O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system. Catal. Lett. 92, 181 (2004)
8.Nomura, M., Aida, H., Nakatani, K., Gopalakrishanan, S., Sugawara, T., Nakao, S., Seshimo, M., Ishikawa, T., Kawamura, M.Preparation of a catalyst composite silica membrane reactor for steam reforming reaction by using a counterdiffusion CVD method. Ind. Eng. Chem. Res. 45, 3950 (2006)
9.Ioannides, T., Verykios, X.E.Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane. Catal. Lett. 36, 165 (1996)
10.Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A.On the applicability of methane technology to the catalysed dry reforming of methane. Appl. Catal., A 237, 239 (2002)
11.Lee, D., Hacarlioglu, P., Oyama, S.T.Effect of pressure in membrane reactors: Trade off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure. Top. Catal. 29, 45 (2004)
12.Shu, J., Grandjean, B.P., Van Neste, A., Kaliagnine, S.Catalytic palladium-based membrane reactors: A review. Can. J. Chem. Eng. 69, 1036 (1991)
13.Sanches, J., Tsotsis, T.T.Current developments and future research in catalytic membrane reactorsFundamentals of Inorganic Membrane Science and Technology edited by A.J. Burggaraaf and L. Cot (Elsevier, Amsterdam, The Netherlands 1996)529
14.Media, G.S., Barbieri, G., Dorioli, E.Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Can. J. Chem. Eng. 77, 698 (1999)
15.Verweij, H., Lin, Y.S., Dong, J.Microporous silica and zeolite membranes for hydrogen purification. MRS Bull. 31, 756 (2006) Vos, R.M., Verweij, H.High selectivity, high flux silica membrane for gas separation. Science 279, 1710 (1998)
17.Prabhu, A.K., Oyama, S.T.Highly hydrogen selective ceramic membranes: Application to the transformation of greenhouse gases. J. Membr. Sci. 176, 233 (2000)
18.Nair, B.N., Yamaguchi, T., Okubo, T., Suematsu, H., Keizer, K., Nakao, S.Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci. 135, 237 (1997)
19.Yoshida, K., Hirano, Y., Fujii, H., Tsuru, T., Asaeda, M.Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J. Chem. Eng. Jpn. 34, 523 (2001)
20.Kusakabe, K., Shibao, F., Zhao, G., Sotowa, K., Watanabe, K., Saito, T.Surface modificaton of silica membranes in a tubular-type module. J. Membr. Sci. 215, 321 (2003)
21.Kanezashi, M., Asaeda, M.Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J. Membr. Sci. 271, 86 (2006)
22.Igi, R., Yoshioka, T., Ikuhara, Y.H., Iwamoto, Y., Tsuru, T.Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc. 91, 2975 (2008)
23.Iwamoto, Y.Microporous ceramic membranes for high-temperature separation of hydrogen. Membrane 29, 258 (2004)
24.Ikuhara, Y.H., Mori, H., Saito, T., Iwamoto, Y.High temperature hydrogen adsorption properties of precursor derived nickel nanoparticle-dispersed amorphous silica. J. Am. Ceram. Soc. 90, 546 (2007)
25.Yamazaki, S., Uno, N., Mori, H., Ikuhara, Y.H., Iwamoto, Y., Kato, T., Hirayama, T.TEM observation of hydrogen permeable Si-M-O(M=Ni or Sc) membranes synthesized on mesorporous anodic alumina capillary tubes. J. Mater. Sci. 41, 2679 (2006)
26.Richardson, J.T., Cale, T.S.Interpretation of hydrogen chemisorption on nickel catalysts. J. Catal. 102, 419 (1986)
27.Pennycook, S.J.High resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991)
28.Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., Ikuhara, Y.Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006)
29.Shibata, N., Chisholm, M.F., Nakamura, A., Pennycook, S.J., Yamamoto, T., Ikuhara, Y.Nonstoichiometric dislocation cores in α-alumina. Science 316, 82 (2007)
30.Selwood, P.W.The chemisorptive bonding of hydrogen on nickel. J. Catal. 42, 148 (1976)
31.Anderson, J.R.Structure of Metallic Catalysts (Academic Press, London 1975)296
32.Bartholomew, C.H.Hydrogen adsorption on supported cobalt, iron, and nickel. Catal. Lett. 7, 27 (1990)
33.Reuel, R.C., Bartholomew, C.H.The stoichiometries of H2 and CO adsorptions on cobalt: Effect of support and preparation. J. Catal. 85, 63 (1984)
34.Masaryk, J.S., Fulrath, R.M.Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198 (1973) Lange, R.S.A., Keizer, K., Burggraaf, A.J.Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes. J. Membr. Sci. 104, 81 (1995)
36.Oyama, S.T., Lee, D., Hacarlioglu, P., Saraf, R.F.Theory of hydrogen permeability in nonporous silica membranes. J. Membr. Sci. 244, 45 (2004)


Determination of reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica for hydrogenseparation at high temperature

  • Yumi H. Ikuhara, Tomohiro Saito, Yukichi Sasaki, Seiji Takahashi and Tsukasa Hirayama (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed