Skip to main content Accessibility help

Design of a bulk amorphous alloy containing Cu–Zr with simultaneous improvement in glass-forming ability and plasticity

  • Seok-Woo Lee (a1), Sang-Chul Lee (a1), Yu-Chan Kim (a2), E. Fleury (a2) and Jae-Chul Lee (a1)...


We synthesized bulk amorphous alloy systems of Cu43Zr43Al7X7 (X = Be, Ag; numbers indicate at.%), with the objective of simultaneously enhancing the glass-forming ability (GFA) and the plasticity. The alloys not only exhibit high plasticity (∼7%, ∼8%), but also possess enhanced GFA (alloys with 12 and 8 mm diameter). The possible mechanisms underlying this enhanced GFA and plasticity exhibited by these alloys are discussed based on the atomic-packing state and atomistic-scale compositional separation associated with the mixing enthalpy difference. A strategy for designing bulk amorphous alloys with simultaneous improvement in the GFA and the plasticity is proposed from the viewpoint of atomic-packing state and atomistic-scale phase separation.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).
2Xu, D., Duan, G., and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).
3Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).
4Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., and Kim, D.H.: Enhancement of the glass forming ability of Cu-Zr-Al alloys by Ag addition. Met. Mater. Int. 10, 575 (2004).
5Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
6Greer, A.L.: Confusion by design. Nature 366, 303 (1993).
7Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).
8Park, E.S. and Kim, D.H.: Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).
9Egami, T.: Universal criterion for metallic glass formation. Mater. Sci. Eng., A 226–228, 261 (1997).
10Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).
11Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).
12Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
13Rassouly, S.M.K.: The packing density of ‘perfect’ binary mixtures. Powder Technol. 103, 145 (1999).
14Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 (2005).
15Yokoyama, Y.: Ductility improvement of Zr–Cu–Ni–Al glassy alloy. J. Non-Cryst. Solids 316, 104 (2003).
16Yinnon, H. and Uhlmann, D.R.: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids: Part I: Theory. J. Non-Cryst. Solids 54, 253 (1983).
17Lu, Z.P. and Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).
18Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54, 1145 (2006).
19Men, H., Pang, S.J., and Zhang, T.: Glass-forming ability and mechanical properties of Cu50Zr50−xTix alloys. Mater. Sci. Eng., A 408, 326 (2005).
20Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).
21 Unpublished. Experimentally developed by Prof. S. Yi of Kyoungbuk National University, Korea.
22Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., and Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 (2006).
23Park, E.S., Kim, D.H., Ohkubo, T., and Hono, K.: Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. J. Non-Cryst. Solids 351, 1232 (2005).
24Jia, P., Guo, H., Li, Y., Xu, J., and Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Mater. 54, 2165 (2006).
25 Unpublished: Experimentally developed by the authors.
26Dai, C., Guo, H., Shen, Y., Li, Y., Ma, E., and Xu, J.: A new centimeter– diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 (2006).


Design of a bulk amorphous alloy containing Cu–Zr with simultaneous improvement in glass-forming ability and plasticity

  • Seok-Woo Lee (a1), Sang-Chul Lee (a1), Yu-Chan Kim (a2), E. Fleury (a2) and Jae-Chul Lee (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed