Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T21:02:40.859Z Has data issue: false hasContentIssue false

Deposition of nitrides and oxides of aluminum and titanium by pulse laser irradiation

Published online by Cambridge University Press:  31 January 2011

S.R. Nishitani
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
S. Yoshimura
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
H. Kawata
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
M. Yamaguchi
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Get access

Abstract

Deposits of nitrides and oxides of Al and Ti have been produced by laser irradiation of Al and Ti targets in air, N2, and NH3 + N2 gases. Microstructure and constituent phases in these deposits have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffractometry (XRD). The distribution of metalloid elements has been investigated by Rutherford backscattering spectrometry (RBS). On the basis of the results of these examinations, the nitride and oxide deposits have been shown to be formed by reactions between ambient gas and metal-melt or metal-vapor which take place during pulse laser irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Biunno, N., Narayan, J., Hofmeister, S. K., Srivatsa, A. R., and Singh, R. K., Appl. Phys. Lett. 54, 1519 (1989).CrossRefGoogle Scholar
2.Auciello, O., Barnes, T., Chevacharoenkul, S., Schreiner, A. F., and McGuire, G. E., Thin Solid Films 181, 65 (1989).CrossRefGoogle Scholar
3.Rykalin, N.N., Uglov, A. A., Grebennikov, V.A., and Ignat'ev, M.B., Sov. Phys. Dokl. 28, 895 (1983).Google Scholar
4.Scheive, H-J. and Siemroth, R., IEEE Trans. Plasma Sci. 18, 917 (1990).Google Scholar
5.Nishitani, . S.R., Yamaoka, H., and Yamaguchi, M., Jpn. J. Appl. Phys. 29, 2477 (1990).CrossRefGoogle Scholar
6.Chan, S-W., Dijkkamp, D., Wu, X.D., Venkatesan, T., and Chang, C.C., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 287.Google Scholar
7.Ogale, S. B., Polman, A., Quentin, F. O. P., Roorda, S., and Saris, F. W., Appl. Phys. Lett. 50, 138 (1987).CrossRefGoogle Scholar
8.Matsunawa, A. and Katayama, S., Laser Welding, Machining and Materials Processing, Proceedings of the International Conference on Applications of Lasers and Electro-Optics-ICALEO ‘85,edited by Albright, C. (Springer-Verlag, New York, 1986), p. 205.Google Scholar
9.Ursu, I., Mihailescu, I.N., Nistor, L. C., Popa, Al, Popescu, M., Teodorescu, V. S., Nanu, L., Prokhorov, A. M., Konov, V. I., Tokarev, V. N., and Uglov, S.A., J. Phys. D 18, 1693 (1985).Google Scholar
10.Craciun, V., Leggieri, G., Luches, A., Martino, M., Mihailescu, I. N., and Ursu, I., Appl. Surf. Sci. 43, 304 (1989).CrossRefGoogle Scholar
11. Joint Committee of Powder Diffraction Spectra: TiN (osbornite), File No. 6–0642, and Ti (hexagonal), File No. 5–0682.Google Scholar
12.Lippens, B.C. and deBoer, J.H., Acta Cryst. 17, 1312 (1964).CrossRefGoogle Scholar
13.Wicks, C. E. and Block, F. E., Thermodynamic Properties of 65 ElementsTheir Oxides, Halides, Carbides and Nitrides, Bureau of Mines, U. S. Depart, of Interior, Bulletin 605 (1963).Google Scholar