Skip to main content Accessibility help
×
Home

Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices

  • Philip C. Yashar (a1), Scott A. Barnett (a1), Lars Hultman (a2) and William D. Sproul (a3)

Abstract

Polycrystalline Y2O3/ZrO2 superlattice thin films were deposited using opposedcathode reactive magnetron sputtering. Pulsed direct-current power was used to eliminate arcing on the metallic targets. Radio-frequency power was applied to the substrates to achieve ion bombardment of the growing film. In order to reproducibly deposit at high rates in Ar–O2 mixtures, the Y target voltage was used to indirectly feedback-control the O2 partial pressure. Deposition rates as high as ∼70% of the pure metal rates were achieved, typically 3.5 μm/h. Superlattices with periods ranging from 2.6 to 95 nm were deposited. Y2O3 layer thicknesses were either 75% or 50% of the superlattice period. X-ray diffraction and transmission electron microscopy studies showed well-defined superlattice layers. The ZrO2 layers exhibited the high-temperature cubic-fluorite structure, which was epitaxially stabilized by the cubic Y2O3 layers, for thicknesses ≤7 nm. The equilibrium monoclinic structure was observed for thicker ZrO2 layers. Nanoindentation hardnesses ranged from 11.1 to 14.5 GPa with little dependence on period. The hardness results are discussed in terms of current superlattice hardening theories.

Copyright

References

Hide All
1.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J-E., Markert, L.C., and Greene, J.E., J. Appl. Phys. 62, 481 (1987).
2.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7, 901 (1992).
3.Chu, X., Wong, M.S., Sproul, W.D., Rohde, S.L., and Barnett, S.A., J. Vac. Sci. Technol. A 10, 1604 (1992).
4.Menezes, S. and Anderson, D.P., J. Electrochem. Soc. 137, 440 (1990).
5.Chu, X. and Barnett, S.A., J. Appl. Phys. 77, 4403 (1995).
6.Anderson, P.M. and Li, C., Nanostruct. Mater. 5, 349 (1995).
7.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).
8.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).
9.Aita, C.R., Wiggins, M.D., Whig, R., and Scanlon, C.M.. J. Appl. Phys. 79, 1176 (1996).
10.Rühle, M., J. Vac. Sci. Technol. A 3, 749 (1985).
11.Garvie, R.C., J. Phys. Chem. 82, 218 (1978).
12.Banerjee, R., Ahuja, R., and Fraser, H., Phys. Rev. Lett. 76, 3778 (1996).
13.Madan, A., Kim, I.W., Cheng, S.C., Yashar, P., Dravid, V.P., and Barnett, S.A., Phys. Rev. Lett. 78, 1743 (1997).
14.Yashar, P., Chu, X., Barnett, S.A., Rechner, J., Wang, Y.Y., Wong, M.S., and Sproul, W.D., Appl. Phys. Lett. 72, 987 (1998).
15.Ohring, M., The Materials Science of Thin Films (Academic Press, New York, 1992).
16.Helmersson, U. and Sundgren, J.E., J. Electron Microsc. Techn. 4, 361 (1986).
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).
18.Browder, J.S., Ballad, S.S., and Klocek, P., in Handbook of Infrared Optical Materials, edited by Klocek, P. (Marcel Dekker, New York, 1991), Chap. 5.
19.Ljungcrantz, H., Hultman, L., Sundgren, J-E., and Karlsson, L., J. Appl. Phys. 78, 832 (1995).
20.Mattox, D.M., J. Vac. Sci. Technol. A 7, 1105 (1989).
21.Parrat, L.G., Phys. Rev. 95, 359 (1954).
22.Stearns, D.G., J. Appl. Phys. 65, 491 (1989).
23.Leven, E. and McMurdie, H., Phase Equilibria Diagrams: Phase Diagrams for Ceramists, (American Ceramic Society, Westerville, OH, 1992), Vol. 9.
24.Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985), Vol. 1.
25.Wallenberg, R., Withers, R., Bevan, D.J.M, Thompson, J.G., Barlow, P., and Hyde, B.G., J. Less-Common Met. 156, 116 (1989).
26.Withers, R.L., Thompson, J.G., Gabbitas, N., Wallenberg, L.R., and Welberry, T.R., J. Solid State Chem. 120, 290 (1995).
27.Yashar, P., Rechner, J., Wong, M.S., Sproul, W.D., and Barnett, S.A., Surf. Coat. Technol. 94–95, 333 (1997).
28.Barnett, S.A., in Physics of Thin Films, edited by Francombe, M. and Vossen, J.A. (Academic Press, New York, 1993).
29.Pacheco, E.S. and Mura, T., J. Mech. Phys. Solids. 17, 163 (1969).
30.Lankford, J., J. Mater. Sci. 21, 1981 (1986).
31.Courtney, T.H., Mechanical Behavior of Materials (McGraw-Hill, Inc., New York, 1990).
32.Krzanowski, J.E., Scr. Metall. Mater. 25, 1465 (1991).
33.Madan, A., Wang, Y.Y., Barnett, S.A., Engström, C., Ljungcrantz, H., Hultman, L., and Grimsditch, M., J. Appl. Phys. 84, 776 (1998).
34.Hannink, R.H.J and Swain, M.V., in Annual Review of Materials Science (Annual Reviews, Inc., Palo Alto, CA, 1994), Vol. 24, p 359.
35.Odén, M., Ph.D. Thesis, Linköping Studies in Science and Technology, Dissertation No. 411, Linköping University, 1995.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed