Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T11:47:41.207Z Has data issue: false hasContentIssue false

Deposition and characterization of HfO2 high k dielectric films

Published online by Cambridge University Press:  03 March 2011

Wai Lo
Affiliation:
LSI Logic, Process Module Development, Gresham, Oregon 97030
Arvind Kamath
Affiliation:
LSI Logic, Memory Technology and Systems Integration, Milpitas, California 95035
Shreyas Kher
Affiliation:
Applied Materials, Santa Clara, California 95054
Craig Metzner
Affiliation:
Applied Materials, Santa Clara, California 95054
Jianguo Wen
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Zhihao Chen
Affiliation:
PANalytical Inc., Tempe, Arizona 85283
Get access

Abstract

As the scaling of complementary metal-oxide-semiconductor (CMOS) transistors proceeds, the thickness of the SiO2 gate dielectrics shrinks rapidly and results in higher gate leakage currents. High k dielectric materials are acknowledged to be the possible solutions to this challenge, as their higher k values (e.g., 15–50) raise the physical thickness of the dielectrics that provide similar equivalent thickness of a thinner SiO2 film. In order for the high k materials to be applicable in CMOS devices, there should exist deposition technologies that can deposit highly uniform films over Si wafers with diameters as large as 200 mm. This report discusses the deposition process and the correlation between the growth conditions, structural and dielectric properties of HfO2, which is one of the most promising high k dielectric materials. Judging from the thickness uniformity, surface roughness, k value, and interfacial density of state of the HfO2 films, the metalorganic chemical vapor deposition technique was identified to be suitable for growing HfO2 films targeted at applications as CMOS gate dielectrics.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chau, R., Kavaleiros, J., Roberds, B., Schenker, R., Lionberger, D., Barlage, D., Doyle, B., Arghavani, R., Murthy, A. and Dewey, G.: 2000 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 2000), p. 45.Google Scholar
2 Y. Taur, D. Buchanan, W. Chen, D.J. Frank, K.I. Ismail, S-H. Lo, G.A. Sai-Halasz, R.G. Viswanathan, H-J.C. Wann, S.J. Wind, and H-S. Wong: Proc. IEEE 85 (1997) 486.Google Scholar
3Lo, W. and Chen, J.H. in preparation.Google Scholar
4Timp, G., Agarwal, A., Bourdelle, K.K., Bower, J.E., Boone, T., Ghetti, A., Green, M.L., Garno, J., Gossmann, H., Jacobson, D., Kleiman, R., Kornblit, A., Lochstampfor, C., Mansfield, W., Moccio, S., Sorsch, T., Tennant, D.M., Timp, W. and Tung, R.: 1999 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 1999), p. 55.Google Scholar
5Chaterjee, A., Chapman, R.A., Dixit, G., Kuehne, J., Hattangady, S., Yang, H., Brown, G.A., Aggarwal, R., Erdogan, U., He, Q., Hanratty, M., Rogers, D., Murtaza, S., Fang, S.J., Kraft, R., Rotondaro, A.L.P., Hu, J.C., Terry, M., Lww, W., Fernando, C., Konecni, A., Wells, G., Frystak, D., Bowen, C., Rodder, M. and Chen, I-C.1997 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 1997), p. 821.Google Scholar
6Kamath, A.Kwong, DL, Sun, Y.M., Blass, P.M., Whaley, S., and White, J.M., Appl. Phys. Lett . 70, 63 (1997).Google Scholar
7Tang, S., Wallace, R.M., Seabautgh, A. and King-Smith, D.: Appl. Surf. Sci. 135, 137 (1998).CrossRefGoogle Scholar
8Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. and Timp, G.: Nature (Lond.) 399, 758 (1999).Google Scholar
9Neaton, J.B., Muller, D.A. and Ashcroft, N.W.: Phys Rev. Lett . 85, 1298 (2000).Google Scholar
10Smith, R.C., Hoilien, N., Taylor, C.J., Ma, T.Z., Campbell, S.A., Roberts, J.T., Copel, M., Buchanan, D.A., Gribelyuk, M. and Gladfelter, W.L.: J. Electrochem. Soc. 147, 3472 (2000).Google Scholar
11Lee, B.H., Kang, L., Nieh, R., Qi, W.J. and Lee, J.C.: Appl. Phys. Lett. 76, 1926 (2000).Google Scholar
12Lee, S.J., Luan, H.F., Bai, W.P., Lee, C.H., Jeon, T.S., Senzaki, Y., Roberts, D. and Kwong, D.L.Tech. Dig. Int. Electron Devices Meet (IEEE, New York, 2000), p. 31Google Scholar
13Wilk, G.D. and Wallace, R.M.: Appl. Phys. Lett. 74, 2854 (1999).CrossRefGoogle Scholar
14Lee, B.H., Kang, L., Qi, W.J., Nieh, R., Joen, Y., Onishi, K. and Lee, J.C.1999 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 1999), p. 133.Google Scholar
15Hobbs, C., Tseng, H., Reid, K., Taylor, B., Dip, L., Hebert, L., Garcia, R., Hegde, R., Grant, J., Gilmer, D., Franke, A., Dhandapani, V., Azrak, M., Prabhu, L., Rai, R., Bagchi, S., Conner, J., Backer, S., Dambuya, F., Nguyen, B. and Tobia, P.2001 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 2001), p. 651.Google Scholar
16Tavel, B., Garros, X., Skotnicki, T., Martin, F., Leroux, C., Bensahel, D., Semeria, M.N., Morand, Y., Damlencourt, J.F., Descombes, S., Leverd, F., Le-Friec, Y., Leduc, P., Rivoire, M., Jullian, S. and Pantel, R.2002 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 2002), p. 429.Google Scholar
17Choi, R., Onishi, K., Kang, C.S., Gopalan, S., Neih, R., Kim, Y.H., Han, J.H., Krishnan, S., Cho, H., Shahriar, A. and Lee, J.C.2002 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 2002), p. 613.Google Scholar
18Yang, C.W., Fang, Y.K., Chen, C.H., Chen, S.F., Lin, C.Y., Lin, C.S., Wang, M.F., Lin, Y.M., Hou, H.T., Chen, C.H., Yao, L.G., Chen, S.C. and Liang, M.S.: Appl. Phys. Lett . 83, 308 (2003).Google Scholar
19Cho, M., Park, J., Park, H.B., Hwang, C.S., Jeong, J. and Hyun, K.S.: Appl. Phys. Lett . 81, 224 (2002).Google Scholar
20Cho, M., Park, J., Park, H.B., Hwang, C.S., Jeong, J. and Hyun, K.S.: Appl. Phys. Lett. 81, 3630 (2002).Google Scholar
21Ho, M.Y., Gong, H., Wilk, G.D., Busch, B.W., Green, M.L., Voyles, P.M., Muller, D.A., Bude, M., Lin, W.H., See, A., Loomans, M.E., Lahiri, S.K. and Raisanen, P.I.: J. Appl. Phys. 93, 1477 (2003).Google Scholar
22Choi, K.J., Shin, W.C. and Yoon, S.G.: J. Electrochem. Soc. 149 F18 (2002).Google Scholar
23Choi, K.J., Park, J.B. and Yoon, S.G.: J. Electrochem. Soc. 150 F75 (2003).CrossRefGoogle Scholar
24Lee, M., Lu, Z-H., Ng, W-T., Landheer, D., Wu, X. and Moisa, S.: Appl. Phys. Lett. 83, 2638 (2003).Google Scholar
25Schaeffer, J., Edwards, N.V., Liu, R., Roan, D.,Hradsky, B., Gregory, R., Kulik, J., Duda, E., Contreras, L., Christiansen, J., Zollner, S., Tobin, P., Nguyen, B.Y., Nieh, R., Ramon, M., Rao, R., Hegde, R., Rai, R., Baker, J., and Voight, S.: J. Electrochem. Soc. 150, F67 (2003).Google Scholar
26Park, J., Park, B.K., Cho, M., Hwang, C.S., Oh, K. and Yang, Y.: J. Electrochem. Soc. 149 G9 (2002).Google Scholar
27Wilk, G.D. and Muller, D.A.: Appl. Phys. Lett. , 83,3984 (2003).Google Scholar
28Cho, M., Park, H.B., Park, J., Lee, S.W., Hwang, C.S., Jang, G.H. and Jeong, J.: Appl. Phys. Lett. 83, 5503 (2003).CrossRefGoogle Scholar
29Ho, M.Y., Gong, H., Wilk, G.D., Busch, B.W., Green, M.L., Voyles, P.M., Muller, D.A., Bude, M., Lin, W.H., See, A., Loomans, M.E., Lahiri, S.K. and Räisänen, P.I.: J. Appl. Phys. 93, 1477 (2003).Google Scholar
30Cho, M., Park, J., Park, H.B., Hwang, C.S., Jeong, J., Hyun, K.S., Kim, Y-W., Oh, C-B. and Kang, H-S.: Appl. Phys. Lett . 81, 3630 (2002).CrossRefGoogle Scholar
31Cho, M., Park, J., Park, H.B., Hwang, C.S., Jeong, J. and Hyun, K.S.: Appl. Phys. Lett. 81, 334 (2002).Google Scholar
32Conley, J.F.Jr., Ono, Y., Tweet, D.J. and Solanki, R.: Appl. Phys. Lett. 84, 398 (2004).Google Scholar
33Ramanathan, S., McIntyre, P.C., Guha, S. and Gusev, E.: Appl. Phys. Lett 84, 389 (2004).CrossRefGoogle Scholar
34Yamamoto, K., Hayashi, S., Niwa, M., Asai, M., Horii, S. and Miya, H.: Appl. Phys. Lett. 83, 2229 (2003).Google Scholar
35Carter, R.J., Cartier, E., Kerber, A., Pantisano, L., Schram, T., De Gendt, S. and Heyns, M.: Appl. Phys. Lett. 83, 533 (2003).Google Scholar
36Bastos, K.P., Morais, J., Miotti, L., Pezzi, R.P., Soares, G.V., Baumvol, I.J.R., Hegde, R.I., Tseng, J.J. and Tobin, P.J.: Appl. Phys. Lett 81, 1669 (2002).Google Scholar
37Park, B.K., Park, J., Cho, M., Hwang, C.S., Oh, K., Han, Y. and Yang, D.Y.: Appl. Phys. Lett. 80, 2368 (2002).Google Scholar
38Gilmer, D.C., Hegde, R., Cotton, R., Garcia, R., Dhandapani, V., Triyoso, D., Roan, D., Franke, A., Rai, R., Prabhu, L., Hobbs, D., Grant, J.M., La, L., Samavedam, S., Taylor, B., Tseng, H. and Tobin, P.: Appl. Phys. Lett. 81, 1288 (2002).Google Scholar
39Yeo, Y-C., Ranade, P., King, T-J. and Hu, C.: IEEE Electron Device Lett. 23, 342 (2002).Google Scholar
40Guillaumot, B., Garros, X., Lime, F., Oshima, K., Tavel, B., Chroboczek, J.A., Masson, P., Truche, R., Papon, A.M., Martin, F., Damlencourt, J.F., Maitrejean, S.Rivoire, Leroux, C., Cristoloveanu, S., Ghibaudo, G., Autran, J.L., Skotnicki, T. and Deleonibus, S.2002 Internat. Electron Device Meet. Tech. Digest (IEEE, Piscataway, NJ, 2002), p. 355.Google Scholar
41De Witte, H., Passefort, S., Besling, W., Maes, J.W.H., Eason, K., Young, E., Rittersma, Z.M. and Heyns, M.: J. Electrochem. Soc. 150, F169 (2003).Google Scholar
42 The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001 release. Available at http://public.itrs.net.Google Scholar
43Wilk, G.D., Wallace, R.M. and Anthony, J.M.: J. Appl. Phys. 89, 5243 (2001).Google Scholar
44Stesmans, A. and Afanas’ev, V.V.: Appl. Phys. Lett. 82, 4074 (2003).Google Scholar
45Sim, H. and Hwang, H.: Appl. Phys. Lett. 81, 4038 (2002).Google Scholar