Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T14:35:57.724Z Has data issue: false hasContentIssue false

Deposition and characterization of crystalline conductive RuO2 thin films

Published online by Cambridge University Press:  03 March 2011

Q.X. Jia
Affiliation:
Materials Science and Technology Division, Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S.G. Song*
Affiliation:
Materials Science and Technology Division, Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S.R. Foltyn
Affiliation:
Materials Science and Technology Division, Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X.D. Wu
Affiliation:
Materials Science and Technology Division, Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Present address: MST-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
Get access

Abstract

Highly conductive metal-oxide RuO2 thin films have been successfully grown on yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. Epitaxial growth of RuO2 thin films on YSZ and the atomically sharp interface between the RuO2 and the YSZ substrate are clearly evident from cross-sectional transmission electron microscopy. A diagonal-type epitaxy of RuO2 on YSZ is confirmed from x-ray diffraction measurements. The crystalline RuO2 thin films, deposited at temperatures in the range of 500 °C to 700 °C, have a room-temperature resistivity of 35 ± 2 μω-cm, and the residual resistance ratio (R300 k/R4.2 k) is around 5 for the crystalline RuO2 thin films.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Green, M. L., Gross, M. E., Papa, L. E., Schones, K. J., and Brasen, D., J. Electrochem. Soc. 132, 2677 (1985).CrossRefGoogle Scholar
2Kolawa, E., So, F. C. T., Pan, E.T-S., and Nicolet, M-A., Appl. Phys. Lett 50, 854 (1987).CrossRefGoogle Scholar
3Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).CrossRefGoogle Scholar
4Armstrong, J. A. and Shafer, M., IBM Tech. Disc. Bull. 20, 4633 (1978).Google Scholar
5Jia, Q. X., Shi, Z. Q., Jiao, K. L., Anderson, W. A., and Collins, F. M., Thin Solid Films 196, 29 (1991).CrossRefGoogle Scholar
6Yoo, L. K. and Desu, S. B., Phys. Status Solidi A 133, 565 (1992).CrossRefGoogle Scholar
7Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
8Al-Shareef, H.N., Bellur, K. R., Kingon, A. I., and Auciello, O., Appl. Phys. Lett. 66, 239 (1995).CrossRefGoogle Scholar
9Jia, Q. X., Chang, L. H., and Anderson, W. A., J. Mater. Res. 9, 2561 (1994).CrossRefGoogle Scholar
10Takemura, K., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).CrossRefGoogle Scholar
11Yoshikawa, K., Kimura, T., Noshiro, H., Otani, S., Yamada, M., and Furumura, Y., Jpn. J. Appl. Phys. 33, L867 (1994).CrossRefGoogle Scholar
12Si, J. and Desu, S. B., J. Mater. Res. 8, 2644 (1993).CrossRefGoogle Scholar
13Graebner, J. E. and Greiner, E. S., Phys. Rev. B 13, 2426 (1976).CrossRefGoogle Scholar
14Mar, S. Y., Liang, J. S., Sun, C. Y., and Huang, Y. S., Thin Solid Films 238, 158 (1994).CrossRefGoogle Scholar
15Ryden, W. D., Lawson, A. W., and Sartain, C. C., Phys. Rev. B 1, 1494 (1970).CrossRefGoogle Scholar
16Jia, Q. X., Wu, X. D., Foltyn, S. R., Findikoglu, A. T., Tiwari, P., Zheng, J. P., and Jow, T.R., unpublished.Google Scholar
17Song, S. G., Jia, Q. X., Wu, X. D., and Foltyn, S.R., unpublished.Google Scholar