Skip to main content Accessibility help

Density modulated nanoporous tungsten thin films and their nanomechanical properties

  • Tanil Ozkan (a1), Muhammed T. Demirkan (a2), Kathleen A. Walsh (a3), Tansel Karabacak (a2) and Andreas A. Polycarpou (a1)...


Density modulated tungsten (W) thin films with nanoscale porosity contents of 7% to 40% by volume were grown on Si substrates through magnetron sputter deposition. Process parameters were selected according to the structure zone model, which resulted in film thicknesses between 105 nm and 520 nm. Nanomechanical properties of samples were investigated by means of instrumented nanoindentation. Reduced-χ2 analysis was carried out to assess four models formulated through differential effective medium approach. The model that factored in both the crowding effect and the maximum random packing of pores successfully captured the experimental trends. Attempts to breach the auxetic barrier resulted in large-scale pulverization or spontaneous conversion into WO3. Porosity corrected yield strength calculations underlined the possibility of defining a porosity threshold beyond which the compressive yield strength of density modulated nanoporous metallic thin films would drop abruptly due to aggravated geometric slenderness effects in agreement with earlier hypotheses.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Present address: Materials Science and Engineering Department, Gebze Technical University, Kocaeli, 41400, Turkey.

Contributing Editor: Yang-T. Cheng



Hide All
1. Singh, J.P., Karabacak, T., Ye, D.X., Liu, D.L., Picu, R.C., Lu, T.M., and Wang, G.C.: Physical properties of nanostructures grown by oblique angle deposition. J. Vac. Sci. Technol., B 23(5), 2114 (2005).
2. Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).
3. Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4(6), 3059 (1986).
4. Meyer, D.C., Klingner, A., Holz, T., and Paufler, P.: Self-organized structuring of W/C multilayers on Si substrate. Appl. Phys. A: Mater. Sci. Process. 69(6), 657 (1999).
5. Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution, 1st ed. (Cambridge University Press, Cambridge, England, 2004); pp. 6072.
6. Haghiri-Gosnet, A.M., Ladan, F.R., Mayeux, C., Launois, H., and Joncour, M.C.: Stress and microstructure in tungsten sputtered thin films. J. Vac. Sci. Technol., A 7(4), 2663 (1989).
7. Windischmann, H.: Intrinsic stress in sputtered thin films. J. Vac. Sci. Technol., A 9(4), 2431 (1991).
8. Haghiri-Gosnet, A.M., Ladan, F.R., Mayeux, C., and Launois, H.: Stresses in sputtered tungsten thin films. Appl. Surf. Sci. 38(1–4), 295 (1989).
9. Yonezawa, M., Yamazaki, T., and Kikuta, T.: Porosity Assessment of NiO sputtered film and NO2 sensing property. J. Vac. Soc. Jpn. 53(3), 226 (2010).
10. Ren, D., Zou, Y., Zhan, C.Y., and Huang, N.K.: Study on the porosity of TiO2 films prepared by using magnetron sputtering deposition. J. Korean Phys. Soc. 58(4), 883 (2011).
11. Messier, R., Giri, A.P., and Roy, R.A.: Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol., A 2(2), 500 (1984).
12. Karabacak, T., Picu, C.R., Senkevich, J.J., Wang, G.C., and Lu, T.M.: Stress reduction in tungsten films using nanostructured compliant layers. J. Appl. Phys. 96(10), 5740 (2004).
13. Karabacak, T., Senkevich, J.J., Wang, G.C., and Lu, T.M.: Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures. J. Vac. Sci. Technol., A 23(4), 986 (2005).
14. Hutchinson, J.W.: Mechanics of Thin Films and Multilayers: Course Notes (Technical University of Denmark, Technical Report, 1996).
15. Ohring, M.: Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, CA, 2002); pp. 641742.
16. Evans, A.G. and Hutchinson, J.W.: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43, 2507 (1995).
17. Petrov, I., Barna, P., Hultman, L., and Greene, J.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21, S117 (2003).
18. Smith, D.L.: Thin-Film Deposition: Principles and Practice, 1st ed. (McGraw-Hill Professional, New York, NY, 1995); pp. 307318.
19. Karabacak, T., Zhao, Y.P., Wang, G.C., and Lu, T.M.: Growth front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64(8), 085323 (2001).
20. Liu, R. and Antoniou, A.: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61(7), 2390 (2013).
21. Lu, C., Shun, X., and Lewis, O.: Investigation of film-thickness determination by oscillating quartz resonators with large mass load. J. Appl. Phys. 43(11), 4385 (1972).
22. Demirkan, M.T., Trahey, L., and Karabacak, T.: Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J. Power Sources 273(6), 52 (2015).
23. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(4), 1564 (1992).
24. Fischer-Cripps, A.C.: Nanoindentation, 3rd ed. (Springer, New York, NY, 2011); pp. 129.
25. Pal, R.: Porosity-dependence of effective mechanical properties of pore–solid composite materials. J. Compos. Mater. 39(13), 1147 (2005).
26. Chatterjee, A., Kumar, N., Abelson, J.R., Bellon, P., and Polycarpou, A.A.: Nanoscratch and nanofriction behavior of hafnium diboride thin films. Wear 265, 921 (2008).
27. Meier, P.C. and Zund, R.E.: Statistical Methods in Analytical Chemistry, 2nd ed. (John Wiley & Sons, New York, NY, 2000); p. 76.
28. Lassner, E. and Schubert, W-D.: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, 1st ed. (Kluwer Academic/Plenum Publishers, New York, NY, 1999); pp. 1185.
29. Shih, K.K., Smith, D.A., and Crow, J.R.: Properties of hard tungsten films prepared by sputtering. J. Vac. Sci. Technol. A 6(3), 1681 (1988).
30. Bernardini, J. and Beke, D.L.: Diffusion in nanomaterials. In Nanocrystallinen Metals and Oxides, 1st ed., Knauth, P. and Schoonman, J. eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 4179.
31. Ozkan, T., Shaddock, D., Lipkin, D.M., and Chasiotis, I.: Mechanical strengthening, stiffening, and oxidation behavior of pentatwinned Cu nanowires at near ambient temperatures. Mater. Res. Express 1(3), 035020035021 (2014).
32. Warren, A., Nylund, A., and Olefjord, I.: Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int. J. Refract. Met. Hard Mater. 14, 345 (1996).
33. Huth, F., Schnell, M., Wittborn, J., Ocelic, N., and Hillenbrand, R.: Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352 (2011).
34. Li, C., Hsieh, J.H., Hung, M-T., and Huang, B.Q.: The deposition and microstructure of amorphous tungsten oxide films by sputtering. Vacuum 118, 125 (2015).
35. Bower, A.F.: Applied Mechanics of Solids, 1st ed. (CRC Press, Boca Raton, FL, 2010); pp. 8587.
36. Li, Y. and Antoniou, A.: Synthesis of transversely isotropic nanoporous platinum. Scr. Mater. 66, 503 (2012).
37. Jensen, M.O. and Brett, M.J.: Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80(4), 763 (2005).
38. Ding, Y. and Zhang, Z.: Nanoporous metals. In Springer Handbook of Nanomaterials, 1st ed., Vajtai, R. ed.; Springer Science: New York, NY, 2013; pp. 799802.
39. Wang, L.: Structural tailoring of nanoporous metals and study of their mechanical behavior (University of Kentucky Theses and Dissertations in Chemical and Materials Engineering, Louisville, KY, 2013); pp. 5131.
40. Ma, C., Wang, S.C., Wood, R.J.K., Zekonyte, J., Luo, Q., and Walsh, F.C.: Hardness of porous nanocrystalline Co–Ni electrodeposits. Met. Mater. Int. 19(6), 1187 (2013).
41. Huber, N., Viswanath, R.N., Mameka, N., Markmann, J., and Weissmuller, J.: Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252 (2014).
42. Johnson, K.L.: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, England, 2001); pp. 171179.
43. Lee, K.M., Yeo, C-D., and Polycarpou, A.A.: Relationship between scratch hardness and yield strength of elastic perfectly plastic materials using finite element analysis. J. Mater. Res. 23(8), 2229 (2008).
44. Giri, A., Tao, J., Kirca, M., and To, A.C.: Mechanics of nanoporous metals. In Handbook of Micromechanics and Nanomechanics, 1st ed., Li, S. and Gao, X-L. eds.; Pan Stanford Publishing: Singapore, Singapore, 2013; pp. 827867.
45. Sun, X-Y., Xu, G-K., Li, X., Feng, X-Q., and Gao, H.: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113, 023505- 1 (2013).
46. Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., and Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).
47. Lydzba, D. and Shao, J.F.: Modeling of plastic deformation of saturated porous materials: Effective stress concept. In Applied Micromechanics of Porous Materials, 1st ed., Dormieux, L. and Ulmedited, F-J. eds.; Springer: Udine, Italy, 2005; pp. 187204.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed