Skip to main content Accessibility help

Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity

  • Y.H. Liu (a1), G. Wang (a1), M.X. Pan (a1), P. Yu (a1), D.Q. Zhao (a1) and W.H. Wang (a1)...


A class of Ni–Co–Nb–Ta bulk metallic glasses (BMGs) with a high glass-forming ability is developed. With proper compositional modification, the BMGs exhibit the enhanced plastic strain (up to 4%) and the ultimate strength (up to 3540 MPa). It is found that the interactions of shear bands such as intersecting, arresting, and branching, which normally are related to the plastic metallic glasses, can be observed both in the plastic and brittle Ni–Co–Nb–Ta BMGs. Obvious serrated flow behavior is observed during plastic deformation. The origins of the plasticity and the serrated flow in the Ni-based BMGs are analyzed in analogy to that in crystalline materials.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
2Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R. 44, 45 (2004).
3Li, S. and Wang, W.H.: Formation and properties of new heavy rare-earth-based bulk metallic glasses. Sci. Technol. Adv. Mater. 6, 823 (2005).
4Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).
5Fan, C. and Inoue, A.: Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 77, 46 (2000).
6Choi-Yim, H., Busch, R., Koester, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).
7Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B. 64, 180201 (2001).
8Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).
9Tang, M.B. and Wang, W.H.: CuZr binary bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).
10Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
11Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
12Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
13Hufnagel, T.C., El-Deiry, P., and Vinci, R.P.: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071 (2000).
14Vinogradov, A.Yu. and Khonik, V.A.: Kinetics of shear banding in a bulk metallic glass monitored by acoustic emission measurements. Philos. Mag. 84, 2147 (2004).
15Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).
16Golovin, Y.I., Ivologin, V.I., Knonik, V.A., Kitagawa, K., and Tyurin, A.I.: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).
17Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
18Donovan, P.E. and Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).
19Steif, P.S., Spaepen, F., and Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).
20Argon, A.S., Megusar, J., and Grant, N.J.: Shear band induced dilations in metallic glasses. Scripta Metall. 19, 591 (1985).
21Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Levandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
22Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
23Saida, J., Deny, A., Setyawan, H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).
24Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., and Shek, C.H.: Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement. J. Mater. Res. 20, 2386 (2005).
25Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).
26Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).
27Masumoto, T. and Maddin, R.: Structural stability and mechanical properties of amorphous metals. Mater Sci. Eng. 19, 1 (1975).
28Xing, D.M., Zhang, T.H., and Wei, B.C.: Deformation morphology underneath the Vickers indent in bulk metallic glasses. Chin. Phys. Lett. 22, 1994 (2005).
29Chmelík, F., Pink, E., Król, J., Balík, J., Pešička, J., and Lukáč, P.: Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission. Acta Mater. 46, 4435 (1998).
30Lee, M.H., Bae, D.H., Kim, W.T., and Kim, D.H.: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans., JIM 44, 2084 (2003).


Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity

  • Y.H. Liu (a1), G. Wang (a1), M.X. Pan (a1), P. Yu (a1), D.Q. Zhao (a1) and W.H. Wang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed