Skip to main content Accessibility help

Cysteine-functionalized zwitterionic ZnO quantum dots

  • Osman Arslan (a1), Aadesh P. Singh (a1), Lhoussaine Belkoura (a2) and Sanjay Mathur (a3)


Visible light emitting ZnO quantum dots (QDs) were synthesized by a modified sol–gel method and in situ coated with the amino acid cysteine to modify their surface chemistry and govern the crystal growth process. Surface chelation by a hydrophilic thiol such as cysteine offered a fine control over the particle size and modulated the optical emission and its stability by reducing the density of surfacial oxygen deficiencies and also induced the formation of hierarchical nanostructures in the solution. TEM and XRD results confirmed the formation of mono-dispersed and spherical ZnO QDs in the size range 2.5–3.8 nm. The modulation of band gap energies was manifested in the visible emission of cysteine modified QDs, which was found to be remarkably stable for cell labeling applications, when compared to the photoluminescence of conventional ZnO QDs.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Webber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
2. Baxter, J.B. and Aydil, E.S.: Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 53114, (2005).
3. Tang, X., Choo, E.S.G., Li, L., Ding, J., and Xue, J.: synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem. Mater. 22, 3383 (2010).
4. Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).
5. Murray, C.B., Norris, D.B., and Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).
6. Zeshan, H., Santos, J.F.H., Oskam, G., and Searson, P.C.: Influence of the reactant concentrations on the synthesis of ZnO nanoparticles. J. Coll. Int. Sci. 313, 288 (2005).
7. Mathur, S., Cavelius, C., and Shen, H.: CoGa2O4 nanoparticles and films using a single molecular source. Z. Anorg. Allg. Chem. 2106, 635 (2009).
8. El-Gamel, N.E.A., Wortmann, L., Arroub, K., and Mathur, S.: SiO2@Fe2O3 core-shell nanoparticles for covalent immobilization and release of sparfloxacin drug. Chem. Commun. 10076, 47 (2011).
9. Xiong, H.M., Wang, Z.D., Liu, D.P., Chen, J.S., Wang, Y.G., and Xia, Y.Y.: Bonding polyether onto ZnO nanoparticles: An effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity. Adv. Funct. Mater. 1751, 15 (2005).
10. Trindade, T., O'Brien, P., and Pickett, N.L.: Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem. Mater. 3843, 13 (2001).
11. Chang, C. and Fogler, H.S.: Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir 3295, 13 (1997).
12. Noshir, S.P., Zeshan, H., Kathleen, J.S., and Searson, P.C.: Quenching of growth of ZnO nanoparticles by adsorption of octanethiol. J. Phys. Chem. B 6985, 106 (2002).
13. Hemmer, E., Kohl, Y., Colquhoun, V., Thielecke, H., Soga, K., and Mathur, S.: Probing cytotoxicity of gadolinium hydroxide nanostructures. J. Phys. Chem. B 4358, 114 (2010).
14. Willner, I. and Katz, E.: Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties and applications. Angew. Chem. Int. Ed. 6042, 43 (2004).
15. Wu, Q., Chen, X., Zhang, P., Han, Y., Chen, X., Yan, Y., and Li, S.: Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des. 3011, 8 (2008).
16. Dickerson, M.B., Sandhage, K.H., and Naik, R.R.: Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 4935, 108 (2008).
17. Gerstel, P., Hoffmann, R.C., Lipowsky, P., Jeurgens, L.P.H., and Aldinger, J.B.F.: Mineralization from aqueous solutions of zinc salts directed by amino acids and peptides. Chem. Mater. 179, 18 (2006).
18. Rebilly, J.N., Gardner, P.W., Darling, G.R., Bacsa, J., and Rosseinsky, M.J.: Chiral II−VI semiconductor nanostructure superlattices based on an amino acid ligand. Inorg. Chem. 9390, 47 (2008).
19. Wong, E.M., Bonevich, J.E., and Searson, P.C.: Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J. Phys. Chem. B 7770, 102 (1998).
20. Meulenkamp, E.A.: Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 5566, 102 (1998).
21. Liu, L., Fu, L., Liu, Y., Liu, Y., Jiang, P., Liu, S., Gao, M., and Tang, Z.: Bioinspired synthesis of vertically aligned ZnO nanorod arrays: Toward greener chemistry. Cryst. Growth Des. 4793, 9 (2009).
22. Degen, A. and Kosec, M.: Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 667, 20 (2000).
23. Cockel, P., Vahrenkamp, H., and Zuberbühler, A.D.: Zinc complexes of cysteine, histidine, and derivatives thereof: Potentiometric determination of their compositions and stabilities. Helv. Chim. Acta 571, 76 (1993).
24. Arena, G., Musumeci, S., Rizzarelli, E., Sammartano, S., and Rigano, C.: Zinc(II)-cysteine and zinc(II) cystine systems: Selection of species from potentiometric data. Transition Met. Chem. 5(1), 297 (1980).
25. Oskam, G., Hu, Z., Penn, R.L., Pesika, N., and Searson, P.C.: Coarsening of metal oxide nanoparticles. Phys. Rev. 11403, 66 (2002).
26. Jantz, D., Amann, B.T., Gatto, G.J., and Berg, J.M. Jr.: The design of functional DNA-binding proteins based on zinc finger domains. Chem. Rev. 789, 104 (2004).
27. Chang, H. and Matiyevic, E.: Interactions of metal hydrous oxides with chelating agents: IV. Dissolution of hematite. J. Colloid Interface Sci. 479, 92 (1983).
28. Meldrum, F.C. and Coelfen, H.: Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 4332, 108 (2008).
29. Cha, J.N., Stucky, G.D., Morse, D.E., and Demin, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 289, 403 (2000).
30. Tomczak, M.M., Gupta, M.K., Drummy, L.F., Rozenzhak, S.M., and Naik, R.R.: Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 876, 5 (2009).
31. Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., Kumagai, I., and Adschiri, T.: Bioassisted room-temperature immobilization and mineralization of zinc oxide—the structural ordering of ZnO nanoparticles into a flower-type morphology Adv. Mater. 2571, 17 (2005).
32. Barth, A.: The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 141, 74 (2000).
33. Spanhel, L. and Anderson, M.A.: Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc. 2826, 113 (1991).
34. Han, H., Wang, C., Ma, Z., and Su, S.: A facile method to produce highly monodispersed nanospheres of cystine aggregates. Nanotechnology 5163, 17 (2006).
35. Viswanatha, R., Santra, P.K., and Sarma, D.D.: Self assembly and electronic structure of ZnO nanocrystals. J. Cluster Sci. 389, 20 (2009).
36. Soares, J.W., Whitten, J.E., Oblas, D.W., and Steeves, D.M.: Novel photoluminescence properties of surface-modified nanocrystalline zinc oxide: Toward a reactive scaffold. Langmuir 371, 24 (2008).
37. Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., and Wong, G.K.L.: Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem. Mater. 2268, 12 (2000).
38. Singh, A.K., Viswanath, V., and Janu, V.C.: Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 874, 129 (2009).
39. Dijken, A.V., Makkinje, J., and Meijerink, A.: The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J. Lumin. 323, 92 (2001).
40. Vandijken, A., Meulenkamp, E., Vanmaekelbergh, D., and Meijerink, A.: The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission. J. Lumin. 454, 8789 (2000).
41. Schmidt-Mende, L. and MacManus-Driscoll, J.L.: ZnO - nanostructures, defects, and devices. Mater. Today 40, 10 (2007).
42. Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., Grieder, K., Wampfler, B., Mathur, S., Wick, P., and Krug, H.: In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7(4), 402–16 (2013).
43. Tuomela, S., Autio, R., Bürki-Thurnherr, T., Arslan, O., Kunzmann, A., Andersson-Willman, B., Wick, P., Mathur, S., Scheynius, A., Krug, H., Fadeel, B., and Lahesmaa, R.: Gene expression profiling of immune-competent cells exposed to engineered zinc oxide or titanium dioxide nanoparticles: Comprehensive toxicogenomic and bioinformatics approach. PLoS One (2013, in press).


Type Description Title
Supplementary materials

Arslan et al. supplementary material
Supplementary figures

 Unknown (25.5 MB)
25.5 MB
Supplementary materials

Arslan et al. supplementary material
Supplementary information

 Word (15.4 MB)
15.4 MB

Cysteine-functionalized zwitterionic ZnO quantum dots

  • Osman Arslan (a1), Aadesh P. Singh (a1), Lhoussaine Belkoura (a2) and Sanjay Mathur (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed