Skip to main content Accessibility help

Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion

  • Marlene Walpurga Kapp (a1), Oliver Renk (a1), Thomas Leitner (a2), Pradipta Ghosh (a1), Bo Yang (a1) and Reinhard Pippan (a1)...


Structural instabilities of nanocrystalline and ultrafine-grained (UFG) materials have been recognized as a major challenge during cyclic loading, especially in the low cycle fatigue regime. Although a severe deterioration of the mechanical properties has been reported during cyclic deformation, quantification of the softening portion solely due to grain coarsening was not possible. It will be demonstrated that cyclic high pressure torsion (CHPT) is a versatile method to enable direct measurement of the impact of grain coarsening on cyclic softening, as failure of the sample is prevented. Here, CHPT experiments have been performed on 99.99% UFG nickel. Grain coarsening similar to conventional uniaxial fatigue experiments was observed and could be studied up to large cyclic accumulated macro strains of 50. The correlation of electron back scatter diffraction images with microhardness measurements facilitated quantification of the cyclic softening as a consequence of grain growth for the very first time. Further, structural investigations revealed distinctly enhanced grain coarsening within shear bands. Thus, the cyclic strain seems to be the most important parameter controlling mechanically driven boundary migration during cyclic loading at low homologous temperatures.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Yuntian Zhu



Hide All
1. Mughrabi, H., Höppel, H.W., and Kautz, M.: Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr. Mater. 51(8), 807 (2004).
2. Renk, O., Hohenwarter, A., Wurster, S., and Pippan, R.: Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 77(100), 401 (2014).
3. Yu, T., Hansen, N., Huang, X., and Godfrey, A.: Observation of a new mechanism balancing hardening and softening in metals. Mater. Res. Lett. 2(3), 160165 (2014).
4. Renk, O., Ghosh, P., and Pippan, R.: Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures. Scr. Mater. 137, 60 (2017).
5. Gianola, D.S., van Petegem, S., Legros, M., Brandstetter, S., van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54(8), 2253 (2006).
6. Gianola, D.S., Mendis, B.G., Cheng, X.M., and Hemker, K.J.: Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater. Sci. Eng., A 483–484, 637 (2008).
7. Rupert, T.J., Gianola, D.S., Gan, Y., and Hemker, K.J.: Experimental observations of stress-driven grain boundary migration. Science 326(5960), 1686 (2009).
8. Legros, M., Gianola, D.S., and Hemker, K.J.: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56(14), 3380 (2008).
9. Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52(18), 5381 (2004).
10. Mompiou, F., Legros, M., Boé, A., Coulombier, M., Raskin, J-P., and Pardoen, T.: Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study. Acta Mater. 61(1), 205 (2013).
11. Zhang, K., Weertman, J.R., and Eastman, J.A.: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87(6), 061921 (2005).
12. Yang, B., Vehoff, H., Hohenwarter, A., Hafok, M., and Pippan, R.: Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scr. Mater. 58(9), 790 (2008).
13. Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A., and Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40(1), 319 (2010).
14. Agnew, S. and Weertman, J.: Cyclic softening of ultrafine grain copper. Mater. Sci. Eng., A 244(2), 145 (1998).
15. Kunz, L., Lukáš, P., and Svoboda, M.: Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng., A 424(1–2), 97 (2006).
16. Canadinca, D., Niendorf, T., and Maier, H.J.: A comprehensive evaluation of parameters governing the cyclic stability of. Mater. Sci. Eng., A 528, 6345 (2011).
17. Höppel, H.W., Zhou, Z.M., Mughrabi, H., and Valiev, R.Z.: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).
18. Kapp, M.W., Kremmer, T., Motz, C., Yang, B., and Pippan, R.: Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 125, 351 (2017).
19. Höppel, H.W., Xu, C., Kautz, M., Barta-Schreiber, N., Langdon, T.G., and Mughrabi, H.: Cyclic deformation behaviour and possibilities for enhancing the fatigue properties of ultrafine-grained metals. In Nanomaterials by Severe Plastic Deformation, Zehetbauer, M. and Valiev, R.Z., eds. (Wiley-VCH, Weinheim, Germany 2004); p. 677.
20. Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010).
21. Zheng, S.J., Wang, J., Carpenter, J.S., Mook, W.M., Dickerson, P.O., Mara, N.A., and Beyerlein, I.J.: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).
22. Kapp, M.W., Hohenwarter, A., Wurster, S., Yang, B., and Pippan, R.: Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel. Acta Mater. 106, 239 (2016).
23. Jia, D., Ramesh, K.T., and Ma, E.: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51(12), 3495 (2003).
24. Agnew, S.R., Vinogradov, A.Y., Hashimoto, S., and Weertman, J.R.: Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28(9), 1038 (1999).
25. Vinogradov, A., Kaneko, Y., Kitagawa, K., Hashimoto, S., and Valiev, R.Z.: On the cyclic response of ultrafine-grained copper. Mater. Sci. Forum 269–272, 987 (1998).
26. Wu, S.D., Wang, Z.G., Jiang, C.B., and Li, G.Y.: Scanning electron microscopy-electron channelling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing. Philos. Mag. Lett. 82(10), 559 (2002).
27. Wu, S.D., Wang, Z.G., Jiang, C.B., Li, G.Y., Alexandrov, I.V., and Valiev, R.Z.: Shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Mater. Sci. Eng., A 387–389, 560 (2004).
28. Mughrabi, H. and Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32(9), 1413 (2010).
29. Wong, M., Kao, W., Lui, J., Chang, C., and Kao, P.: Cyclic deformation of ultrafine-grained aluminum. Acta Mater. 55(2), 715 (2007).
30. Wetscher, F. and Pippan, R.: Cyclic high-pressure torsion of nickel and Armco iron. Philos. Mag. 86(36), 5867 (2006).
31. Schafler, E. and Pippan, R.: Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel. Mater. Sci. Eng., A 387–389, 799 (2004).
32. Ghosh, P., Renk, O., and Pippan, R.: Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel. Mater. Sci. Eng., A 684, 101 (2017).
33. Toth, L., Gilormini, P., and Jonas, J.: Effect of rate sensitivity on the stability of torsion textures. Acta Metall. Mater. 36(12), 3077 (1988).
34. Kunz, L., Lukáš, P., Pantelejev, L., and Man, O.: Stability of ultrafine-grained structure of copper under fatigue loading. Procedia Eng. 10, 201 (2011).
35. Boyce, B.L. and Padilla, H.A.: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42(7), 1793 (2011).
36. Meirom, R.A., Alsem, D.H., Romasco, A.L., Clark, T., Polcawich, R.G., Pulskamp, J.S., Dubey, M., Ritchie, R.O., and Muhlstein, C.L.: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59(3), 1141 (2011).
37. Glushko, O. and Cordill, M.J.: The driving force governing room temperature grain coarsening in thin gold films. Scr. Mater. 130, 42 (2017).
38. Brandstetter, S., Zhang, K., Escuadro, A., Weertman, J.R., and van Swygenhoven, H.: Grain coarsening during compression of bulk nanocrystalline nickel and copper. Scr. Mater. 58(1), 61 (2008).
39. Fang, T.H., Li, W.L., Tao, N.R., and Lu, K.: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587 (2011).
40. Mompiou, F. and Legros, M.: Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5 (2015).
41. Carsley, J.E., Fisher, A., Milligan, W.W., and Aifantis, E.C.: Mechanical behavior of a bulk nanostructured iron alloy. Metall. Mater. Trans. A 29(9), 2261 (1998).
42. Duggan, B.J., Hatherly, M., Hutchinson, W.B., and Wakefield, P.T.: Deformation structures and textures in cold-rolled 70:30 brass. Met. Sci. 12(8), 343 (2013).
43. Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, U.K., 2004).
44. Finney, J.M. and Laird, C.: Strain localization in cyclic deformation of copper single crystals. Philos. Mag. 31(2), 339 (1975).
45. Rajabzadeh, A., Legros, M., Combe, N., Mompiou, F., and Molodov, D.A.: Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philos. Mag. 93(10–12), 1299 (2013).


Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion

  • Marlene Walpurga Kapp (a1), Oliver Renk (a1), Thomas Leitner (a2), Pradipta Ghosh (a1), Bo Yang (a1) and Reinhard Pippan (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed