Skip to main content Accessibility help
×
Home

Cyclic response and fatigue failure of Nitinol under tension–tension loading

  • Dhiraj Catoor (a1), Zhiwei Ma (a2) and Sharvan Kumar (a2)
  • Please note a correction has been issued for this article.

Abstract

Fatigue of superelastic Nitinol in the mixed austenite–martensite state was examined in tension using center-tapered dog-bone specimens. A prestraining procedure, mimicking the load history of a medical device component, was applied prior to cycling: specimens were loaded to a fully martensitic state, unloaded partway into the lower plateau to a mixed-phase state, and then subjected to sinusoidal displacement cycles. Strain maps, obtained using digital image correlation, showed substantial variation in local mean and alternating strains across the gage section. In situ surface imaging using a high-speed camera confirmed crack initiation in a narrow transition zone between austenite and martensite that undergoes cyclic stress-induced martensitic transformation (SIMT). Fatigue life data showed an abrupt transition from high-cycle runouts to low-cycle fatigue failures at a stress amplitude level corresponding to the threshold for activating cyclic SIMT. The fatigue threshold can be estimated from the tensile loading–unloading curve.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: Sharvan_Kumar@brown.edu

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1.McKelvey, A.L. and Ritchie, R.O.: Fatigue-crack growth in the superelastic endovascular stent material nitinol. In Biomedical Materials-Drug Delivery, Implants and Tissue Engineering, Vol. 550, Neenan, T., Marcolongo, M., and Valentini, R.F., eds. (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1999); p. 281.
2.Robertson, S.W., Pelton, A.R., and Ritchie, R.O.: Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57, 1 (2012).
3.Melton, K.N. and Mercier, O.: Fatigue of NiTi thermoelastic martensites. Acta Metall. 27, 137 (1979).
4.Miyazaki, S., Sugaya, Y., and Otsuka, K.: Effects of various factors on fatigue life of Ti–Ni alloys. Proc. MRS Int. Meet. Adv. Mater. 9, 251 (1988).
5.Kim, Y.S. and Miyazaki, S.: Fatigue properties of Ti–50.9 at.% Ni shape memory wires. In Proceedings of SMST-97 (Int. Org. on SMST, Pacific Grove, CA, 1997); p. 473.
6.Kim, Y.: Fatigue properties of the Ti–Ni base shape memory alloy wire. Mater. Trans. 43, 1703 (2002).
7.Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., and Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng., A 378, 24 (2004).
8.Wagner, M., Sawaguchi, T., Kausträter, G., Höffken, D., and Eggeler, G.: Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng., A 378, 105 (2004).
9.Bewerse, C., Gall, K.R., McFarland, G.J., Zhu, P., and Brinson, L.C.: Local and global strains and strain ratios in shape memory alloys using digital imagecorrelation. Mater. Sci. Eng., A 568, 134 (2013).
10.Zheng, L., He, Y., and Moumni, Z.: Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in situ macro-band observation. Int. J. Plast. 90, 116 (2017).
11.McKelvey, A.L. and Ritchie, R.O.: Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall. Mater. Trans. A 32, 731 (2001).
12.Robertson, S.W., Mehta, A., Peltonand, A.R., and Ritchie, R.O.: Evolution of crack-tip transformation zones in superelastic nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater. 55, 6198 (2007).
13.Daly, S., Miller, A., Ravichandran, G., and Bhattacharya, K.: Experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater. 55, 6322 (2007).
14.Robertson, S.W. and Ritchie, R.O.: In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials 28, 700 (2006).
15.Pelton, A.R.: Nitinol fatigue: A review of microstructures and mechanisms. J. Mater. Eng. Perform. 20, 613 (2011).
16.Miyazaki, S., Mizukoshi, K., Ueki, T., Sakuma, T., and Liu, Y.: Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater. Sci. Eng., A 273–275, 658 (1999).
17.Reinoehl, M., Bradley, D., Bouthot, R., and Proft, J.: The influence of melt practice on final fatigue properties of superelastic NiTi wires. In SMST-2000 Proceedings from the International Conference on Shape Memory and Superelastic Technologies (Int. Org. SMST, Pacific Grove, CA, 2000); p. 397.
18.Sheriff, J., Pelton, A.R., and Pruitt, L.A.: Hydrogen effects on nitinol fatigue. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (ASM International, 2004); p. 111.
19.Morgan, N., Wick, A., DiCello, J., and Graham, R.: Carbon and oxygen levels in nitinol alloys and the implications for medical device manufacture and durability. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (ASM International, 2006); p. 821.
20.Sawaguchi, T.A., Kausträter, G., Yawny, A., Wagner, M., and Eggeler, G.: Crack initiation and propagation in 50.9 at.% Ni–Ti pseudoelastic shape memory wires in bending rotation fatigue. Metall. Mater. Trans. A 34, 2847 (2003).
21.Wagner, M.F-X. and Eggeler, G.: New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires. Int. J. Mater. Res. 97, 1687 (2006).
22.Tabanli, R.M., Simha, N.K., and Berg, B.T.: Mean stress effects on fatigue of NiTi. Mater. Sci. Eng., A 273–275, 644 (1999).
23.Kugler, C., Matson, D., and Perry, K.E.: Non-zero mean fatigue test protocol for NiTi. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (Int. Org. SMST, Pacific Grove, CA, 2000); p. 409.
24.Pelton, A.R., Schroeder, V., Mitchell, M.R., Gong, X.Y., Barney, M., and Robertson, S.W.: Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1, 153 (2008).
25.Robertson, S.W., Launey, M., Shelley, O., Ong, I., Vien, L., Senthilnathan, K., Saffari, P., Schlegel, S., and Pelton, A.R.: A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J. Mech. Behav. Biomed. Mater. 51, 119 (2015).
26.Shaw, J.A. and Kyriakides, S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243 (1995).
27.Leo, P.H., Shield, T.W., and Bruno, O.P.: Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall. Mater. 41, 2477 (1993).
28.Daly, S., Ravichandran, G., and Bhattacharya, K.: Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 55, 3593 (2007).
29.Reedlunn, B., Churchill, C.B., Nelson, E.E., Shaw, J.A., and Daly, S.H.: Tension, compression, and bending of superelastic shape memory alloy tubes. J. Mech. Phys. Solids 63, 506 (2014).
30.Pelton, A.R., Gong, X-Y., and Duerig, T.W.: Fatigue testing of diamond-shaped specimens. In Medical Device Materials: Proceedings from the Materials & Process for Medical Devices Conference 2003, Shrivastava, S., ed. (ASM International, Materials Park, OH, 2004); p. 199.
31.Ungár, T., Frenzel, J., Gollerthan, S., Ribárik, G., Balogh, L., and Eggeler, G.: On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. J. Mater. Res. 32, 4433 (2017).
32.Duerig, T.W. and Bhattacharya, K.: The influence of the R-phase on the superelastic behavior of NiTi. Shape Mem. Superelasticity 1, 153 (2015).
33.Sedmák, P., Pilch, J., Heller, L., Kopeček, J., Wright, J., Sedlák, P., Frostand, M., and Šittner, P.: Grain-resolved analysis of localized deformation in nickel–titanium wire under tensile load. Science 353, 559 (2016).
34.James, R.D. and Zhang, Z.: A way to search for multiferroic materials with “unlikely” combinations of physical properties. In Magnetsim and Structure in Functional Matererials, Vol. 79, Planes, A., Manosa, L., and Saxena, A., eds. (Springer Series in Materials Science, Springer, Berlin, Heidelberg, 2005); p. 159.
35.Chluba, C., Ge, W., Lima de Miranda, R., Strobel, J., Kienle, L., Quandt, E., and Wuttig, M.: Ultralow-fatigue shape memory alloy films. Science 348, 1004 (2015).
36.Bonsignore, C.: Present and future approaches to lifetime prediction of superelastic nitinol. Theor. Appl. Fract. Mech. 92, 298 (2017).
37.Shamimi, A., Amin-Ahmadi, B., Stebner, A., and Duerig, T.: The effect of low temperature aging and the evolution of R-phase in Ni-rich NiTi. Shape Mem. Superelasticity 4, 417 (2018).
38.Runciman, A., Xu, D., Pelton, A.R., and Ritchie, R.O.: An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials 32, 4987 (2011).

Keywords

Cyclic response and fatigue failure of Nitinol under tension–tension loading

  • Dhiraj Catoor (a1), Zhiwei Ma (a2) and Sharvan Kumar (a2)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: