Skip to main content Accessibility help
×
Home

Crystallography and structural evolution of LiNbO3 and LiNb1−xTaxO3 films on sapphire prepared by high-rate thermal plasma spray chemical vapor deposition

  • D. V. Shtansky (a1), S. A. Kulinich (a1), K. Terashima (a1), T. Yoshida (a1) and Y. Ikuhara (a2)...

Abstract

The structure and the crystallography of lithium niobate and lithium niobate–tantalate thin films (0.2–1.0 μm in thickness) with the tantalum composition range of 0 ≤ x ≤ 0.5 grown on (0001) sapphire substrate by thermal plasma spray chemical vapor deposition have been studied by means of cross-sectional high-resolution transmission electron microscopy and x-ray diffraction. The tantalum composition in the films shows a minor effect on the rocking curve full width at half maximum values. The narrowest rocking curve width was obtained for the LiNb0.5Ta0.5O3 film to be as low as 0.25° θ. The films are under compressive strain along the c direction; c- and a-axis lattice parameters are correspondingly smaller and higher than those of the bulk single crystal. Under optimized growth conditions, the LiNbO3 and LiNb1−xTaxO3 films are 97% c-axis oriented. The film out-of-plane orientation changes from the [0001] to the [0112] direction by either decreasing the growth rate or increasing the substrate temperature. Particular attention has been paid to the orientation of individual grains in the partly c-axis-oriented films. The results demonstrate that their orientations are not random and specific orientation relationships are preferred for the film nucleation. The surface of as-received sapphire substrate reveals polishing defects with the well-defined surface ledges of 1–2 nm in height with smooth terraces of 25 nm in width. In the case of columnar growth, the terrace width becomes a limiting factor controlling the lateral crystallite size in the film. Finally, the film growth mechanism is discussed.

Copyright

References

Hide All
1Betts, R.A. and Pitt, C.W., Electron. Lett. 21, 960 (1985).
2Sakashita, Y. and Segawa, H., J. Appl. Phys. 77, 5995 (1995).
3Lee, S.Y. and Feigelson, R.S., J. Mater. Res. 14, 2662 (1999).
4Lee, S.Y. and Feigelson, R.S., J. Cryst. Growth 186, 594 (1998).
5Feigelson, R.S., J. Cryst. Growth 166, 1 (1996).
6Lu, Z., Hiskes, R., DiCarolis, S.A., Route, R.K., Feigelson, R.S., Leplingard, F., and Fouquet, J.E., J. Mater. Res. 9, 2258 (1994).
7Wernberg, A.A., Gysling, H.J., Filo, A.J., and Blanton, T.N., Appl. Phys. Lett. 62, 946 (1993).
8Matsunaga, H., Ohno, H., Okamoto, Y., and Nakajima, Y., J. Cryst. Growth 99, 630 (1990).
9Kaigawa, K., Kawaguchi, T., Imaeda, M., Sakai, H., and Fukuda, T., J. Cryst. Growth 191, 119 (1998).
10Kawaguchi, T., Kitayama, H., Imaeda, M., Ito, S., Kaigawa, K., Taniuchi, T., and Fukuda, T., J. Cryst. Growth 169, 94 (1996).
11Derderian, G.J., Barrie, J.D., Aitchison, K.A., Adams, P.M., and Mecartney, M.L., J. Am. Ceram. Soc. 77, 820 (1994).
12Ono, S., Takeo, T., and Hirano, S., J. Am. Ceram. Soc. 79, 1343 (1996).
13Bouquet, V., Longo, E., Leite, E.R., and Varela, J.A., J. Mater. Res. 14, 3155 (1999).
14Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., Appl. Phys. Lett. 61, 1000 (1992).
15Hu, W.S., Liu, Z.G., and Feng, D., J. Appl. Phys. 80, 7089 (1996).
16Veignant, F., Gandais, M., Aubert, P., and Garry, G., Thin Solid Films 336, 163 (1998).
17Yilmaz, S., Gerhard-Multhaupt, R., Bonner, W.A., Hwang, D.M., Inam, A., Martinez, J.A., Ravi, T.S., Sands, T., Wilkens, B.J., Wu, X.D., and Venkatesan, T., J. Mater. Res. 9, 1272 (1994).
18Agostinelli, J.A., Braunstein, G.H., and Blanton, T.N., Appl. Phys. Lett. 63, 123 (1993).
19Park, S-K., Baek, M-S., Bae, S-C., Kwun, S-Y., Kim, K-T., and Kim, K-W., Solid State Commun. 111, 347 (1999).
20Blanton, T.N. and Chatterjee, D.K., Thin Solid Films 256, 59 (1995).
21Fujimura, N., Kakinoki, M., Tsuboi, H., and Ito, T., J. Appl. Phys. 75, 2169 (1994).
22Yamada, A., Tamada, H., and Saito, M., Appl. Phys. Lett. 61, 2848 (1992).
23Yamaguchi, N., Hattori, T., Terashima, K., and Yoshida, T., Thin Solid Films 316, 185 (1998).
24Wu, Z.C., Hu, W.S., Liu, J.M., Wang, M., and Liu, Z.G., Mater. Lett. 34, 332 (1998).
25Takamura, Y., Hayasaki, K., Terashima, K., and Yoshida, T., Plasma Chem. Plasma Proc. 16, 141S (1996).
26Berg, S. and Katardjiev, I.V., J. Vac. Sci. Technol., A 17, 1916 (1999).
27Cheng, S.D., Kam, C.H., Zhou, Y., Han, X.Q., Que, W.X., Lam, Y.L., Chan, Y.C., Oh, J.T., and Gan, W.S., Thin Solid Films 365, 77 (2000).
28Veignant, F., Gandais, M., Aubert, P., and Garry, G., J. Cryst. Growth 196, 141 (1999).
29Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).
30Thornton, J.A., J. Vac. Sci. Technol. 11, 666 (1974).
31Thornton, J.A., J. Vac. Sci. Technol. 12, 830 (1975).
32Smith, D.L., Thin-film Deposition Principles and Practice (McGraw-Hill, New York, 1995), pp. 327380.
33Venables, J.A., Spiller, G.D.T., and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984).
34Robins, J.L., Appl. Surf. Sci. 33/34, 379 (1988).
35Lee, G.H., Yoshimoto, M. and Koinuma, H., Appl. Surf. Sci. 127–129, 393 (1998).

Crystallography and structural evolution of LiNbO3 and LiNb1−xTaxO3 films on sapphire prepared by high-rate thermal plasma spray chemical vapor deposition

  • D. V. Shtansky (a1), S. A. Kulinich (a1), K. Terashima (a1), T. Yoshida (a1) and Y. Ikuhara (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed