Skip to main content Accessibility help

Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification

  • Junwei Fu (a1) and Yuansheng Yang (a1)


The relationship between morphology and crystallography of an entangled lathy ferrite during directional solidification in Fe–Cr–Ni alloy has been investigated. During solidification, morphology of the lathy ferrite depends on the orientation relationship between the lathy ferrite and austenite. When the plane in the austenite substrate is ${(1\bar 11)_{\rm{\gamma }}}$ , “Y-shaped” lathy ferrite grows in an entangled cluster and the orientation relationship between the lathy ferrite and austenite is the Nishiyama–Wassermann relationship. Lathy ferrite is preferentially elongated along ${\langle 211\rangle _{\rm{\gamma }}}$ and ${\langle 011\rangle _{\rm{\gamma }}}$ directions on ${(1\bar 11)_{\rm{\gamma }}}$ plane due to lower misfit. The included angle among the “Y-shaped” lathy ferrite is about 120° because the angle between each pair of ${[21\bar 1]_{\rm{\gamma }}}$ , ${[\bar 112]_{\rm{\gamma }}}$ , and ${[\bar 1\bar 2\bar 1]_{\rm{\gamma }}}$ crystal directions is equal to 120°. Formation mechanism of the perpendicular lathy ferrite has also been analyzed according to the relationship between ${\langle 211\rangle _{\rm{\gamma }}}$ and ${\langle 011\rangle _{\rm{\gamma }}}$ on ${(1\bar 11)_{\rm{\gamma }}}$ plane. This indicates that required crystal morphology of the lathy ferrite in the solidified microstructure can be obtained by controlling the crystal plane of austenite.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Lo, K.H., Shek, C.H., and Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39 (2009).
2.Brooks, J.A. and Thompson, A.W.: Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int. Mater. Rev. 36, 16 (1991).
3.Hunter, A. and Ferry, M.: Phase formation during solidification of AISI 304 austenitic stainless steel. Scr. Mater. 46, 253 (2002).
4.Rajasekhar, K., Harendranath, C.S., Raman, R., and Kulkarni, S.D.: Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater. Charact. 38, 53 (1997).
5.Kim, S.H., Moon, H.K., Kang, T., and Lee, C.S.: Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Mater. Sci. Eng., A 356, 390 (2003).
6.Herlach, D.M.: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R 12, 177 (1994).
7.Su, Y.Q., Luo, L.S., Li, X.Z., Guo, J.J., Yang, H.M., and Fu, H.Z.: Well-aligned in situ composites in directionally solidified Fe-Ni peritectic system. Appl. Phys. Lett. 89, 231918 (2006).
8.Fu, J.W., Yang, Y.S., and Guo, J.J.: Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J. Cryst. Growth 311, 3661 (2009).
9.Hecht, U., Gránásy, L., Pusztai, T., Böttger, B., Apel, M., Witusiewicz, V., Ratke, L., De Wilde, J., Froyen, L., Camel, D., Drevet, B., Faivre, G., Fries, S.G., Legendre, B., and Rex, S.: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng., R 46, 1 (2004).
10.Edström, K., Ito, S., and Thomas, J.O.: Crystal structure and charge compensation mechanisms in a barium potassium â-ferrite. J. Mater. Chem. 5, 995 (1995).
11.Fukumoto, S., Okane, T., Umeda, T., and Kurz, W.: Crystallographic relationships between δ-ferrite and γ-austenite during unidirectional solidification of Fe-Cr-Ni alloys. ISIJ Int. 40, 677 (2000).
12.Baldissin, D. and Battezzati, L.: Multicomponent phase selection theory applied to high nitrogen and high manganese stainless steels. Scr. Mater. 55, 839 (2006).
13.Brooks, J.A., Williams, J.C., and Thompson, A.W.: STEM analysis of primary austenite solidified stainless steel welds. Metall. Trans. A 14, 23 (1983).
14.Vitek, J.M., Dasgupta, A., and David, S.A.: Microstructural modification of austenitic stainless steels by rapid solidification. Metall. Trans. A 14, 1833 (1983).
15.Brooks, J.A., Baskes, M.I., and Greulich, F.A.: Solidification modeling and solid-state transformations in high-energy density stainless steel welds. Metall. Trans. A 22, 915 (1991).
16.Shankar, V., Gill, T.P.S., Terrance, A.L.E., Mannan, S.L., and Sundaresan, S.: Relation between microstructure, composition, and hot cracking in Ti-stabilized austenitic stainless steel weldments. Metall. Trans. A 31, 3109 (2000).
17.Lin, X., Yue, T.M., Yang, H.O., and Huang, W.D.: Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy. Metall. Trans. A 38, 127 (2007).
18.Fu, J.W., Yang, Y.S., Guo, J.J., Ma, J.C., and Tong, W.H.: Formation of two-phase coupled microstructure in AISI 304 stainless steel during directional solidification. J. Mater. Res. 24, 2385 (2009).
19.Fu, J.W., Yang, Y.S., Guo, J.J., Ma, J.C., and Tong, W.H.: Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification. J. Cryst. Growth 311, 132 (2008).
20.Headley, T.J. and Brooks, J.A.: A new bcc-fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall. Trans. A 33, 5 (2002).
21.Morito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T.: The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789 (2003).
22.Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N.: The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323 (2006).
23.Qiu, D. and Zhang, W.Z.: A TEM study of the crystallography of austenite precipitates in a duplex stainless steel. Acta Mater. 55, 6754 (2007).
24.Mangan, M.A., Kral, M.V., and Spanos, G.: Correlation between the crystallography and morphology of proeutectoid Widmanstätten cementite precipitates. Acta Mater. 47, 4263 (1999).
25.Zhang, M.X. and Kelly, P.M.: Crystallography and morphology of Widmanstätten cementite in austenite. Acta Mater. 46, 4617 (1998).
26.Kurdjumov, G. and Sachs, G.: Über den Mechanismus der Stahlhärtung. Z. Phys. 64, 325 (1930).
27.Nishiyama, Z.: X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Science Reports of the Research Institutes, Tohoku University, Vol. 23 (1934), p. 637.
28.Wassermann, G.: Einfluβ der α-γ-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit. Arch. Eisenhüttenwes. 6, 347 (1933).
29.Pitsch, W.: The martensite transformation in thin foils of iron-nitrogen alloys. Philos. Mag. 4, 577 (1959).
30.Zou, H.F., Yang, H.J., and Zhang, Z.F.: Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649 (2008).
31.Fu, J.W. and Yang, Y.S.: Orientational dependence of lathy ferrite in Fe-Cr-Ni alloy during directional solidification. Mater. Lett. 81, 177 (2012).
32.Wulff, G.: Zur frage der geschwindigkeit des wachstums und der auflösung von kristallflächen. Z. Kristallogr. 34, 449 (1901).

Related content

Powered by UNSILO

Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification

  • Junwei Fu (a1) and Yuansheng Yang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.