Skip to main content Accessibility help

Crystallographic analysis of nucleation for random orientations in high-purity tantalum

  • Yahui Liu (a1), Shifeng Liu (a2), Haiyang Fan (a3), Chao Deng (a2), Lingfei Cao (a2), Xiaodong Wu (a1) and Qing Liu (a1)...


Strain path changes during clock rolling cause more serious interaction between adjacent grains, resulting in the occurrence of interactive regions (IRs) with random orientations. Furthermore, plenty of new grains with relatively random orientations are introduced by the subsequent annealing of these IRs. The morphology of the IR and the origin of random orientations were therefore investigated in this study, and the electron backscatter diffraction technique was used to characterize crystallographic orientations of nuclei and deformed matrices. A short-time annealing was imposed on a specimen to catch the transient nucleation behaviors. The results indicate that the orientations of nuclei are similar to their surrounding deformed matrices, especially the points with larger local-misorientation. Additionally, the shape of new grains depends on where it forms, and it is suggested that this fact mainly results from the great difference in stored energies between deformed matrices with {111} and {100} orientations.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Michaluk, C.A.: Correlating discrete orientation and grain size to the sputter deposition properties of tantalum. J. Electron. Mater. 31, 2 (2002).
2.Zhang, Z., Kho, L., and Wickersham, C.E.: Effect of grain orientation on tantalum magnetron sputtering yield. J. Vac. Sci. Technol., A 24, 1107 (2006).
3.Robinson, M.T. and Southern, A.L.: Sputtering experiments with 1- to 5-keV Ar+ ions. III. Monocrystal targets of the hexagonal metals Mg, Zn, Zr, and Cd. J. Appl. Phys. 39, 3463 (1968).
4.Robinson, M.T. and Southern, A.L.: Sputtering experiments with 1- to 5-keV Ar+ ions. II. Monocrystalline targets of Al, Cu, and Au. J. Appl. Phys. 38, 2969 (1967).
5.Humphreys, F.J.: Nucleation in recrystallization. Mater. Sci. Forum 467–470, 107 (2004).
6.Raabe, D.: Recovery and recrystallization: Phenomena, physics, models, simulation. In Physical Metallurgy, Vol. 2, 5th ed., Laughlin, D.E. and Homo, K. eds. (Elsevier, Amsterdam, the Netherlands 2014); p. 2291.
7.Humphreys, F.J. and Hatherly, M., eds.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, U.K., 2004).
8.Deng, C., Liu, S.F., Fan, H.Y., Hao, X.B., Ji, J.L., Zhang, Z.Q., and Liu, Q.: Elimination of elongated bands by clock rolling in high-purity tantalum. Metall. Mater. Trans. A 46, 5477 (2015).
9.Liu, Y.H., Liu, S.F., Zhu, J.L., Deng, C., Fan, H.Y., Cao, L.F., and Liu, Q.: Strain path dependence of microstructure and annealing behavior in high purity tantalum. Mater. Sci. Eng., A 707, 518 (2017).
10.Liu, S.F., Fan, H.Y., Deng, C., Hao, X.B., Guo, Y., and Liu, Q.: Through-thickness texture in clock-rolled tantalum plate. Int. J. Refract. Met. Hard Mater. 48, 194 (2015).
11.Deng, C., Liu, S.F., Ji, J.L., Hao, X.B., Zhang, Z.Q., and Liu, Q.: Texture evolution of high purity tantalum under different rolling paths. J. Mater. Process. Technol. 214, 462 (2014).
12.Raabe, D.: On the orientation dependence of static recovery in low-carbon steels. Scr. Metall. Mater. 33, 735 (1995).
13.Hutchinson, W.B.: Deformation substructures and recrystallisation. Mater. Sci. Forum 558–559, 13 (2007).
14.Kim, D.I., Kim, J.S., Kim, J.H., and Choi, S.H.: A study on the annealing behavior of Cu-added bake-hardenable steel using an in situ EBSD technique. Acta Mater. 68, 9 (2014).
15.Wright, S.I., Nowell, M.M., and Field, D.P.: A review of strain analysis using electron backscatter diffraction. Microscopy and microanalysis 17, 316 (2011).
16.Fan, H., Liu, S., Li, L., Deng, C., and Liu, Q.: Largely alleviating the orientation dependence by sequentially changing strain paths. Mater. Des. 97, 464 (2016).
17.Vandermeer, R.A. and Snyder, J.W.B.: Recovery and recrystallization in rolled tantalum single crystals. Metall. Trans. A 10, 1031 (1979).
18.Hagihara, K., Yamasaki, M., Honnami, M., Izuno, H., Tane, M., Nakano, T., and Kawamura, Y.: Crystallographic nature of deformation bands shown in Zn and Mg-based long-period stacking ordered (LPSO) phase. Philos. Mag. 95, 132 (2014).
19.Rez-Prado, M.T.P., Hines, J.A., and Vecchio, K.S.: Microstructural evolution in adiabatic shear bands in Ta and Ta–W alloys. Acta Mater. 49, 2905 (2001).
20.Radhakrishnan, B. and Sarma, G.B.: Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals. Mater. Sci. Eng., A 494, 73 (2008).
21.Deng, C., Liu, S.F., Hao, X.B., Ji, J.L., Zhang, Z.Q., and Liu, Q.: Orientation dependence of stored energy release and microstructure evolution in cold rolled tantalum. Int. J. Refract. Met. Hard Mater. 46, 24 (2014).
22.Wilkinson, A.J. and Dingley, D.J.: Quantitative deformation studies using electron back scatter patterns. Acta Metall. Mater. 39, 3047 (1991).
23.Choi, S-H. and Jin, Y-S.: Evaluation of stored energy in cold-rolled steels from EBSD data. Mater. Sci. Eng., A 371, 149 (2004).
24.Choi, S.H.: Monte Carlo technique for simulation of recrystallization texture in interstitial free steels. Mater. Sci. Forum 408–412, 469 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed