Skip to main content Accessibility help
×
Home

Crystallization kinetics of homogeneously precipitated lead zirconate titanate using urea: Comparison with the conventional ammonia precipitated sample

  • S. Roy (a1), S. Bysakh (a1) and J. Subrahmanyam (a1)

Abstract

Ultrafine, PbZr0.53Ti0.47O3 powder was synthesized by homogeneous precipitation of metal ions in aqueous solution using urea. The results obtained from different characterization methods were compared with those obtained from the conventional precipitation method using ammonia in terms of crystallization, homogeneity, and microstructure. The as-dried precipitate converted to the single-phase crystalline lead zirconate titanate powder when calcined at 550 °C and above. The calcined powder showed smaller particle size, minimum agglomeration, and uniform shape. The growth of the particles was very little at higher temperatures. Powdered samples that precipitated using urea crystallized directly to rhombohedral lead zirconate titanate, without any intermediate pyrochlore phase formation. The NH3-precipitated powder converted to rhombohedral lead zirconate titanate via metastable pyrochlore and it showed phase segregation upon annealing at higher temperatures. The reaction kinetics has been studied by x-ray diffraction, differential thermal analysis, and differential scanning calorimetry.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: r_subir@dmrl.ernet.in

References

Hide All
1.Moulson, A.J., Herbert, J.M.: Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, UK, 1990).
2.Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics (Academic Press, New York, 1971).
3.Wu, A., Vilarinh, P.M., Salvado, I.M. Miranda, Baptista, J.L.: Sol-gel preparation of lead zirconate titanate powder and ceramics: Effect of alkoxide stablizers and lead precursor. J. Am. Ceram. Soc. 83(6), 1379 (2000).
4.Zang, M., Salvado, I.M. Miranda, Vilarinh, P.M.: Synthesis and characterization of lead zirconate titanate fibres prepared by sol-gel method: The role of acid. J. Am. Ceram. Soc. 86(5), 775 (2003).
5.Lakeman, D.E., Payne, D.A.: Processing effects in the sol-gel preparation of PZT derived gel powders and ferroelectric thin layers. J. Am. Ceram. Soc. 75(11), 3091 (2003).
6.Zimmermann-Chopin, R., Auer, S.: Spray drying of sol-gel precursors for the manufacturing of PZT powders. J. Sol-Gel Sci. Technol. 3, 101 (1994).
7.Chen, H., Ma, J., Jhu, B., Cui, Y.: Reaction mechanisms in the formation of lead zirconate titanate solid solutions under hydrothermal conditions. J. Am. Ceram. Soc. 76(3), 625 (1993).
8.Moon, J., Kerchner, J.A., Krarup, H., Adair, J.H.: Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 14(2), 425 (1999).
9.Junmin, X., Wang, J.: Lead zirconate titanate via reaction sintering of hydroxide precursors. J. Mater. Res. 14(4), 1503 (1999).
10.Scheafer, J., Sigmund, W., Roy, S., Aldinger, F.: Low-temperature synthesis of ultrafine Pb(Z,rTi)O3 powder. J. Mater. Res. 12(10), 2518 (1997).
11.Seo, D.S., Kim, H., Jung, H.C., Lee, J.K.: Synthesis and characterization of TiO2 nanocrystalline powder prepared by homogeneous precipitation using urea. J. Mater. Res. 18(3), 571 (2003).
12.Hwang, T., Hwang, D-K.: Preparation of nanocrystalline lead zirconate powder by homogeneous precipitation using hydrogen peroxide and urea. Mater. Lett. 57, 2472 (2003).
13.Oren, E.E., Taspinar, E., Tas, A. Cuneyt: Preparation of lead zirconate by homogeneous precipitation and calcination. J. Am. Ceram. Soc. 80(10), 2714 (1997).
14.Sohna, S., Kwonb, Y., Kimc, Y., Kimd, D.: Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method. Powder Technol. 142, 136 (2004).
15.Oliveira, A.P., Torem, M.L.: The influence of precipitation variables on zirconia powder synthesis. Powder Technol. 119, 181 (2001).
16.Taş, A. Cüneyt: Preparation of lead zirconate titanate by homogeneous precipitation and calcination. J. Am. Ceram. Soc. 82(6), 1582 (1999).
17.Powder, JCPDS Diffraction File, Card Nos. 28-0529, 41-0677, 72-1144, and 75-0991.
18.Aiken, B., Hsu, W.P., Matijevic, E.: Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium (III) and mixed yttrium(III)/ cerium(III) systems. J. Am. Ceram. Soc. 71(10), 845 (1988).
19.Schwartz, W.R., Payne, D.A. Crystallization behavior of chemically prepared and rapidly solidified PbTiO3, in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 199.
20.Chen, K.C., Janah, A., Mackenzie, J.D. Crystallization of oxide films derived from metallo-organic precursors, in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 731.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed