Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T12:47:02.098Z Has data issue: false hasContentIssue false

Crystal chemistry of the compound Sr2Bi2CuO6

Published online by Cambridge University Press:  31 January 2011

R. S. Roth
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
C. J. Rawn
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. A. Bendersky
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The compound Sr2Bi2CuO6 should nominally be the phase with n = 1 of the high Tc superconducting series Sr2Bi2CanO4+2n. However, the superconducting phase with n = 1 (with no CaO) occurs only with a gross deficiency in SrO content. Instead, at the composition Sr2Bi2CuO6, a different phase is formed with an x-ray diffraction pattern considerably different from that expected for the n −1 member of the series. This phase has been found, by a combination of electron diffraction and single crystal and powder x-ray diffraction, to have a commensurate lattice with monoclinic symmetry, space group C2/m or Cm, a = 24.473 (2), b = 5.4223 (5), c = 21.959 (2)A, and β = 105.40 (1)°. The actual composition of this phase may be deficient in CuO by as much as 1.0 mole %.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L20910. (1988).CrossRefGoogle Scholar
2 Sheng, Z. Z. and Hermann, A. M., Nature. 332, 5557 (1988).CrossRefGoogle Scholar
3 Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. NIST (to be published).Google Scholar
4 Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P., J. Am. Ceram. Soc. 72 (8), 15451549. (1989).CrossRefGoogle Scholar
5 Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F. (to be published).Google Scholar
6 Roth, R. S. and Rawn, C. J. (to be published).Google Scholar
7 Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., abstract, annual meeting Am. Cryst. Assoc, Seattle, WA, July 2329. (1989).Google Scholar
8 Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B. 68, 421423 (1987).CrossRefGoogle Scholar
9 Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., McCarron, E. M., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, V., and Sleight, A.W., Phys. Rev. B 38 (1), 225231. (1988).CrossRefGoogle Scholar
10 Torrance, J. B., Tokura, Y., LaPlaca, S. J., Huang, T. C., Savoy, R. J., and Nazzal, A.I., Solid State Commun. 66, 703 (1988).CrossRefGoogle Scholar
11 Onoda, M. and Sato, M., Solid State Commun. 67, 799804. (1988).CrossRefGoogle Scholar
12 Roth, R. S., Am. Phys. Soc. Meeting, New Orleans, LA, March (1988).Google Scholar
13 Roth, R. S., Am. Ceram. Soc. Meeting, Cincinnati, OH, May (1988).Google Scholar
14 Saggio, J. A., Sujata, K., Hahn, J., Hwu, S. J., Poeppelmeier, K. P., and Mason, T. O., J. Am. Ceram. Soc. Commun. (in press) (1989).Google Scholar
15 Chakoumakos, B.C., Ebey, P.S., Sales, B.C., and Sonder, E., J. Mater. Res. 4, 767 (1989).CrossRefGoogle Scholar