Skip to main content Accessibility help

Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity

  • Myeongwhun Pyeon (a1), Tero-Petri Ruoko (a2), Jennifer Leduc (a1), Yakup Gönüllü (a1), Meenal Deo (a1), Nikolai V. Tkachenko (a2) and Sanjay Mathur (a1)...


Hematite films deposited by plasma-enhanced chemical vapor deposition of iron pentacarbonyl [Fe(CO)5] in an oxygen plasma were modified by postdeposition (i) oxygen plasma treatment and (ii) short annealing treatments to reduce the defects and to modify the (sub)surface states and consequently the photoelectrochemical properties. The oxygen plasma treatment resulted in the increase of particle size and augmented surface roughening by densification of grains. Moreover, it induced saturated surface states with reactive oxygen species (O, OH), evident in the X-ray photoelectron spectroscopy (XPS). Under standard illumination (1.5 AM; 100 mW/cm2; 150 W xenon lamp), when compared to the pristine hematite coating (0.696 mA/cm2 at 1.23 V versus RHE and 0.74 V onset) the oxygen plasma-treated films showed severe deterioration in photocurrent density of 0.035 mA/cm2 and an anodic shift in the onset potential (1.10 V onset) due to oxygen rich surface. In a second set of experiments, the oxygen plasma-treated hematite films were briefly annealed (10 min at 750 °C) and the signals of Fe 2p and O 1s recovered to higher binding energies, indicating the formation of oxygen vacancies. In addition, a superior photocurrent density value of max. 1.306 mA/cm2 at 1.23 V versus RHE to that of the pristine hematite photoanode with 0.74 V onset was obtained. Transient absorption spectroscopy further elucidated that the oxygen plasma-induced electron trap states acting as recombination centers that are unfavorable for photoelectrochemical activity. The alteration in Fe:O stoichiometry and thus photocurrent density are corroborated by determination of water oxidation rates in annealed (7.1 s−1) and oxygen plasma treated (2.5 s−1) samples.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Xiaobo Chen

This paper has been selected as an Invited Feature Paper.



Hide All
1. Ursua, A., Gandia, L.M., and Sanchis, P.: Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 100, 410 (2012).
2. Xiang, C., Papadantonakis, K.M., and Lewis, N.S.: Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 3, 169 (2016).
3. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
4. Grave, D.A., Dotan, H., Levy, Y., Piekner, Y., Scherrer, B., Malviya, K.D., and Rothschild, A.: Heteroepitaxial hematite photoanodes as a model system for solar water splitting. J. Mater. Chem. A 4, 3052 (2016).
5. Malviya, K.D., Dotan, H., Shlenkevich, D., Tsyganok, A., Mor, H., and Rothschild, A.: Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J. Mater. Chem. A 4, 3091 (2016).
6. Wang, L., Yang, Y., Zhang, Y., Rui, Q., Zhang, B., Shen, Z., and Bi, Y.: One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting. J. Mater. Chem. A 5, 17056 (2017).
7. Dias, P., Andrade, L., and Mendes, A.: Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38, 218 (2017).
8. Tamirat, A.G., Rick, J., Dubale, A.A., Su, W-N., and Hwang, B-J.: Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 1, 243 (2016).
9. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).
10. Kleiman-Shwarsctein, A., Hu, Y-S., Forman, A.J., Stucky, G.D., and McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).
11. Hung, W-H., Chien, T-M., and Tseng, C-M.: Enhanced photocatalytic water splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. J. Phys. Chem. C 118, 12676 (2014).
12. Warren, S.C., Voitchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hebert, C., Rothschild, A., and Gratzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).
13. Lin, Y., Yuan, G., Sheehan, S., Zhou, S., and Wang, D.: Hematite-based solar water splitting: Challenges and opportunities. Energy Environ. Sci. 4, 4862 (2011).
14. Peter, L.M., Wijayantha, K.G.U., and Tahir, A.A.: Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss. 155, 309 (2012).
15. Bard, A.J., Fan, F-R.F., Gioda, A.S., Nagasubramanian, G., and White, H.S.: On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discuss. Chem. Soc. 70, 19 (1980).
16. Du, C., Zhang, M., Jang, J-W., Liu, Y., Liu, G-Y., and Wang, D.: Observation and alteration of surface states of hematite photoelectrodes. J. Phys. Chem. C 118, 17054 (2014).
17. Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Grätzel, M., Klug, D.R., and Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. U. S. A. 109, 15640 (2012).
18. Yang, Y., Forster, M., Ling, Y., Wang, G., Zhai, T., Tong, Y., Cowan, A.J., and Li, Y.: Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 55, 3403 (2016).
19. Liu, Y., Yan, X., Kang, Z., Li, Y., Shen, Y., Sun, Y., Wang, L., and Zhang, Y.: Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016).
20. Le Formal, F., Tetreault, N., Cornuz, M., Moehl, T., Gratzel, M., and Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).
21. Yang, Y., Xie, R., Liu, Y., Li, J., and Li, W.: Effect of surface passivation on photoelectrochemical water splitting performance of WO3 vertical plate-like films. Catalysts 5, 2024 (2015).
22. Gui, Q., Xu, Z., Zhang, H., Cheng, C., Zhu, X., Yin, M., Song, Y., Lu, L., Chen, X., and Li, D.: Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl. Mater. Interfaces 6, 17053 (2014).
23. Singh, A.P., Mettenbörger, A., Golus, P., and Mathur, S.: Photoelectrochemical properties of hematite films grown by plasma enhanced chemical vapor deposition. Int. J. Hydrogen Energy 37, 13983 (2012).
24. Wang, M., Pyeon, M., Gonullu, Y., Kaouk, A., Shen, S., Guo, L., and Mathur, S.: Constructing Fe2O3/TiO2 core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7, 10094 (2015).
25. Mettenbörger, A., Gönüllü, Y., Fischer, T., Heisig, T., Sasinska, A., Maccato, C., Carraro, G., Sada, C., Barreca, D., Mayrhofer, L., Moseler, M., Held, A., and Mathur, S.: Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy 19, 415 (2016).
26. Badia-Bou, L., Mas-Marza, E., Rodenas, P., Barea, E.M., Fabregat-Santiago, F., Gimenez, S., Peris, E., and Bisquert, J.: Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C 117, 3826 (2013).
27. Le Formal, F., Grätzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099 (2010).
28. Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).
29. Zandi, O. and Hamann, T.W.: The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 22485 (2015).
30. Tamirat, A.G., Su, W-N., Dubale, A.A., Chen, H-M., and Hwang, B-J.: Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J. Mater. Chem. A 3, 5949 (2015).
31. Iandolo, B., Wickman, B., Zoric, I., and Hellman, A.: The rise of hematite: Origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 3, 16896 (2015).
32. Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S.: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564 (2004).
33. Yamashita, T. and Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).
34. Zhu, C., Li, C., Zheng, M., and Delaunay, J-J.: Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 7, 22355 (2015).
35. Wandelt, K.: Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1 (1982).
36. Hu, Y., Boudoire, F., Hermann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B.S., Fortunato, G., Graetzel, M., and Braun, A.: Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. J. Phys. Chem. C 120, 3250 (2016).
37. Zhang, X., Klaver, P., van Santen, R., van de Sanden, M.C.M., and Bieberle-Hütter, A.: Oxygen evolution at hematite surfaces: The impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 120, 18201 (2016).
38. Bora, D.K., Braun, A., Erat, S., Löhnert, R., Ariffin, A.K., Manzke, R., Sivula, K., Graule, T., Grätzel, M., and Constable, E.C.: Evolution of an oxygen near-edge X-ray absorption fine structure transition in the upper hubbard band in α-Fe2O3 upon electrochemical oxidation. J. Phys. Chem. C 115, 5619 (2011).
39. Forster, M., Potter, R.J., Ling, Y., Yang, Y., Klug, D.R., Li, Y., and Cowan, A.J.: Oxygen deficient α-Fe2O3 photoelectrodes: A balance between enhanced electrical properties and trap-mediated losses. Chem. Sci. 6, 4009 (2015).
40. van Oversteeg, C.H.M., Doan, H.Q., de Groot, F.M.F., and Cuk, T.: In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 46, 102 (2017).
41. Shen, S., Zhou, J., Dong, C.L., Hu, Y., Tseng, E.N., Guo, P., Guo, L., and Mao, S.S.: Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Sci. Rep. 4, 6627 (2014).
42. Suntivich, J., Hong, W.T., Lee, Y-L., Rondinelli, J.M., Yang, W., Goodenough, J.B., Dabrowski, B., Freeland, J.W., and Shao-Horn, Y.: Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856 (2014).
43. Fu, Y., Dong, C-L., Zhou, Z., Lee, W-Y., Chen, J., Guo, P., Zhao, L., and Shen, S.: Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: A tradeoff between electronic structure and nanostructure evolution. Phys. Chem. Chem. Phys. 18, 3846 (2016).
44. Crocombette, J.P., Pollak, M., Jollet, F., Thromat, N., and Gautier-Soyer, M.: X-ray-absorption spectroscopy at the Fe L2,3 threshold in iron oxides. Phys. Rev. B 52, 3143 (1995).
45. Laan, G.v.d. and Kirkman, I.W.: The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J. Phys.: Condens. Matter 4, 4189 (1992).
46. Jiménez-Villacorta, F., Prieto, C., Huttel, Y., Telling, N.D., and van der Laan, G.: X-ray magnetic circular dichroism study of the blocking process in nanostructured iron–iron oxide core–shell systems. Phys. Rev. B 84, 172404 (2011).
47. Pollak, M., Gautier, M., Thromat, N., Gota, S., Mackrodt, W.C., and Saunders, V.R.: An in situ study of the surface phase transitions of α-Fe2O3 by X-ray absorption spectroscopy at the oxygen K edge. Nucl. Instrum. Meth. B 97, 383 (1995).
48. Ruoko, T-P., Kaunisto, K., Bärtsch, M., Pohjola, J., Hiltunen, A., Niederberger, M., Tkachenko, N.V., and Lemmetyinen, H.: Subpicosecond to second time-scale charge carrier kinetics in hematite–titania nanocomposite photoanodes. J. Phys. Chem. Lett. 6, 2859 (2015).
49. Barroso, M., Pendlebury, S.R., Cowan, A.J., and Durrant, J.R.: Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724 (2013).
50. Pendlebury, S.R., Wang, X., Le Formal, F., Cornuz, M., Kafizas, A., Tilley, S.D., Gratzel, M., and Durrant, J.R.: Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136, 9854 (2014).
51. Pendlebury, S.R., Cowan, A.J., Barroso, M., Sivula, K., Ye, J., Gratzel, M., Klug, D.R., Tang, J., and Durrant, J.R.: Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304 (2012).
52. Khan, S., Azimi, G., Yildiz, B., and Varanasi, K.K.: Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides. Appl. Phys. Lett. 106, 061601 (2015).
53. Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S.P., Li, L., and Liu, H.: Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 12, 925 (2013).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Pyeon et al. supplementary material
Figures S1-S5

 Word (1.3 MB)
1.3 MB

Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity

  • Myeongwhun Pyeon (a1), Tero-Petri Ruoko (a2), Jennifer Leduc (a1), Yakup Gönüllü (a1), Meenal Deo (a1), Nikolai V. Tkachenko (a2) and Sanjay Mathur (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.