Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T16:29:25.039Z Has data issue: false hasContentIssue false

Critical evaluation of the Lotgering degree of orientation texture indicator

Published online by Cambridge University Press:  01 November 2004

Jacob L. Jones
Affiliation:
Materials Science and Engineering, Purdue University, West Lafayette, Indiana 47907
Elliott B. Slamovich
Affiliation:
Materials Science and Engineering, Purdue University, West Lafayette, Indiana 47907
Keith J. Bowman
Affiliation:
Materials Science and Engineering, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

Preferred orientation in textured ceramics is often assessed by comparing the relative intensities of x-ray diffraction reflections to those of a randomly oriented ceramic using the Lotgering degree of orientation (f). However, this paper provides evidence that indiscriminate assessments of f can be misleading. Using measured intensities of a modestly textured tape cast bismuth titanate (Na0.5Bi4.5Ti4O15) ceramic, calculated f values vary from 7.4 to 73.2% depending on the reflections included in the calculation. The texture is also quantified by calculating the orientation distribution function (ODF) using measured pole figures. A model is then presented that demonstrates f is nonlinear with the multiple of preferred (00l)-orientations, the standard unit of the 00l pole figure.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B., Cook, W.R.Jr., and Jaffe, H.: Piezoelectric Ceramics (Academic Press Limited, India, 1971)Google Scholar
2Shrout, T.R., Eitel, R. and Randall, C. in Piezoelectric Materials in Devices, edited by Setter, N. (Setter, Lausanne, 2002), p. 413Google Scholar
3Sakata, K., Takenaka, T. and Shoji, K.: Hot-forged ferroelectric ceramics of some bismuth compounds with layer structure. Ferroelectrics 22, 825 (1978).CrossRefGoogle Scholar
4Takenaka, T. and Sakata, K.: Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn. J. Appl. Phys. 19, 31 (1980).CrossRefGoogle Scholar
5Takenaka, T., Sakata, K. and Toda, K.: Piezoelectric properties of bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 ceramic. Jpn. J. Appl. Phys. 24–2, 730 (1985).CrossRefGoogle Scholar
6Takenaka, T. and Sakata, K.: Grain-oriented and Mn-doped (NaBi)(1-x)/2CaxBi4Ti4O15 ceramics for piezo- and pyrosensor materials. Sens. Mater. 1, 35 (1988).Google Scholar
7Gelfuso, M.V., Thomazini, D. and Eiras, J.A.: Synthesis and structural, ferroelectric, and piezoelectric properties of SrBi4Ti4O15 ceramics. J. Am. Ceram. Soc. 82, 2368 (1999).CrossRefGoogle Scholar
8Patwardhan, J.S. and Rahaman, M.N.: Compositional effects on densification and microstructural evolution of bismuth titanate. J. Mater. Sci. 39, 133 (2004).CrossRefGoogle Scholar
9Swartz, S., Schulze, W.A. and Biggers, J.V.: Fabrication and electrical properties of grain oriented Bi4Ti3O12 ceramics. Ferroelectrics 38, 765 (1981).CrossRefGoogle Scholar
10Watanabe, H., Kimura, T. and Yamaguchi, T.: Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J. Am. Ceram. Soc. 72, 289 (1989).CrossRefGoogle Scholar
11Watanabe, H., Kimura, T. and Yamaguchi, T.: Sintering of platelike bismuth titanate powder compacts with preferred orientation. J. Am. Ceram. Soc. 74, 139 (1991).CrossRefGoogle Scholar
12Horn, J.A., Zhang, S.C., Selvaraj, U., Messing, G.L. and Trolier-McKinstry, S.: Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921 (1999).CrossRefGoogle Scholar
13Takeuchi, T., Tani, T. and Saito, Y.: Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn. J. Appl. Phys. 38, 5553 (1999).CrossRefGoogle Scholar
14Hong, S-H., Trolier-McKinstry, S. and Messing, G.L.: Dielectric and electromechanical properties of textured bismuth titanate ceramics. J. Am. Ceram. Soc. 83, 113 (2000).CrossRefGoogle Scholar
15Takeuchi, T., Tani, T. and Saito, Y.: Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Jpn. J. Appl. Phys. 39, 5577 (2000).CrossRefGoogle Scholar
16Bunge, H-J.: Texture Analysis in Materials Science: Mathematical Methods (Butterworths, Boston, 1982)Google Scholar
17Kocks, U.F., Tomé, C.N. and Wenk, H-R.: Texture and Anisotropy (Cambridge University Press, Cambridge, U.K., 2000)Google Scholar
18Murugan, G. Senthill and Varma, K.B.R.: Microstructural, dielectric, pyroelectric, and ferroelectric studies of partially grain-oriented SrBi2Ta2O9 ceramics. J. Electroceram. 8, 37 (2002).CrossRefGoogle Scholar
19Venkataraman, B.H. and Varma, K.B.R.: Grain orientation and anisotropy in the physical properties of SrBi2(Nb1-xVx)2O9 (0 ⩽ x ⩽ 0.3) ceramics. J. Mater. Sci. 38, 4895 (2003).CrossRefGoogle Scholar
20Lotgering, F.K.: Topotactical reactions with ferromagnetic oxides having hexagonal crystal structures – I. J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
21Jones, J.L. Ph.D. Thesis, Purdue University (2004)Google Scholar
22 JCPDS—International Centre for Diffraction Data Newtown Square, PA (1998)Google Scholar
23Aurivillius, B.: Mixed oxides with layer lattices III. Structure of BaBi4Ti4O15. Ark. Kemi 2 519 (1950).Google Scholar
24Aurivillius, B.: The structure of Bi2NbO5F and isomorphous compounds. Ark. Kemi 5, 39 (1952).Google Scholar
25Aurivillius, B.: Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9. Ark. Kemi 1, 463 (1949).Google Scholar
26Newnham, R.E.: Cation ordering in Na0.5Bi4.5Ti4O15. Mater. Res. Bull. 2, 1041 (1967).CrossRefGoogle Scholar
27Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
28Castro, A., Millán, P. and Martínez-Lope, M.J.: Substitutions for Bi3+ into (Bi2O2)2+ layers of the Aurivillius (Bi2O2)(A n-1Bn O3n+1) oxides. Solid State Ionics 63–65, 897 (1993).CrossRefGoogle Scholar
29Ramirez, A., Millán, P., Castro, A. and Torrance, J.B.: Compensated doping between layers in Aurivillius oxides. Eur. J. Solid State Inorg. Chem. 31, 173 (1994).Google Scholar
30Blake, S.M., Falconer, M.J., McCreedy, M. and Lightfoot, P.: Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A = Ba, Sr, Ca). J. Mater. Chem. 7, 1609 (1997).CrossRefGoogle Scholar
31Ismunandar, and Kennedy, B.J.: Effect of temperature on cation disorder in ABiNb2O9 (A = Sr, Ba). J. Mater. Chem. 9, 541 (1999).Google Scholar
32Macquart, R., Kennedy, B.J. and Shimakawa, Y.: Cation disorder in the ferroelectric oxeds A Bi2Ta2O9, A = Ca, Sr, Ba. J. Solid State Chem. 160, 174 (2001).CrossRefGoogle Scholar
33Muller, Ch., Jacob, F., Gagou, Y. and Elkaïm, E.: Cationic disorder, microstructure and dielectric response of ferroelectric SBT ceramics. J. Appl. Crystallogr. 36, 880 (2003).CrossRefGoogle Scholar
34Hervoches, C.H. and Lightfoot, P.: Cation disorder in three-layer Aurivillius phases: Structural studies of Bi2-xSr2+xTi1-xNb2+xO12 (0 < x < 0.8) and Bi4-xLaxTi3O12 (x = 1 and 2). J. Solid State Chem. 153, 66 (2000).CrossRefGoogle Scholar
35Hervoches, C.H., Snedden, A., Riggs, R., Kilcoyne, S.H., Manuel, P. and Lightfoot, P.: Structural behavior of the four-layer Aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15. J. Solid State Chem. 164, 280 (2002).CrossRefGoogle Scholar
36Borg, S., Svensson, G. and Bovin, J-O.: Structure study of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m = 2-4) by neutron powder diffraction and electron microscopy. J. Solid State Chem. 167, 86 (2002).CrossRefGoogle Scholar
37Lutterotti, L., Matthies, S. and Wenk, H-R.: MAUD (materials analysis using diffraction): A user friendly java program for Rietveld texture analysis and more, edited by Jerzy A. Szpunar. Proc. Int. Conf. Textures Mater. (National Research Council of Canada, Ontario, Canada), 1, 1599 (1999).Google Scholar
38Radosavljevic, I., Evans, J.S.O. and Sleight, A.W.: Synthesis and structure of pyrochlore-type bismuth titanate. J. Solid State Chem. 136, 63 (1998).CrossRefGoogle Scholar
39Dollase, W.A.: Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267 (1986).CrossRefGoogle Scholar
40Pawlik, K., Pospiech, J. and Lücke, K.: The ODF approximation from pole figures with the aid of the ADC method. Textures Microstruct. 14–18, 25 (1991).CrossRefGoogle Scholar
41Duran, C., Trolier-McKinstry, S. and Messing, G.L.: Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. J. Mater. Res. 18, 228 (2003).Google Scholar