Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T18:38:58.325Z Has data issue: false hasContentIssue false

Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2–Al2O3–BaF2–GdF3 glasses

Published online by Cambridge University Press:  31 January 2011

G. Lakshminarayana
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Hucheng Yang
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Song Ye
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Yin Liu
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
*
a)Address all correspondence to this author. e-mail: qjr@zju.edu.cn
Get access

Abstract

Oxyfluoride aluminosilicate glasses with compositions of 50SiO2–20Al2O3–20BaF2–10GdF3–0.5PrF3xYbF3(x = 0, 1.0, 2.5, 5, 7.5, 10, 15, 20, 25, and 30 mol%) have been prepared to study their thermal and optical properties. From the differential thermal analysis (DTA) measurement, glass-transition temperatures and onset crystallization temperatures have been evaluated and from them, glass-stability factors against crystallization were calculated. Glass stabilities were decreased gradually with fluoride content increment in all the studied glasses. The photoluminescence and decay measurements have also been carried out for these glasses. In these glasses, an efficient near-infrared (NIR) quantum cutting with optimal quantum efficiency approaching 160% have been demonstrated, by exploring the cooperative downconversion mechanism from Pr3+ to Yb3+ with 481 nm (3P03H4) excitation wave length. These glasses are promising materials to achieve high-efficiency silicon-base solar cells by means of downconversion in the visible part of the solar spectrum.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Heer, S., Kompe, K., Gudel, H.U., Haase, M.: Highly efficient multicolour upconversion emission in transparent colloids of nanoparticle-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102 2004CrossRefGoogle Scholar
2Chu, S-Y., Wen, C-H., Tyan, S-L., Lin, Y-G., Juang, Y-D., Wen, C-K.: Polarization tuning the Stokes photoluminescence spectra of erbium doped KNbO3 ceramics. J. Appl. Phys. 96, 2552 2004CrossRefGoogle Scholar
3Shen, S., Jha, A., Huang, L., Joshi, P.: 980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification. Opt. Lett. 30, 1437 2005CrossRefGoogle Scholar
4Kassab, L.R.P., de Preto, A. Oliveira, Lozano, W., de Sa, F.X., Maciel, G.S.: Optical properties and infrared-to-visible upconversion in Er3+-doped GeO2–Bi2O3 and GeO2–PbO–Bi2O3 glasses. J. Non-Cryst. Solids 351, 3468 2005CrossRefGoogle Scholar
5Zhang, Q.Y., Feng, Z.M., Yang, Z.M., Jiang, Z.H.: Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses. J. Quant. Spectrosc. Radiat. Transfer 98, 167 2006CrossRefGoogle Scholar
6Wegh, R.T., Donker, H., Oskam, K.D., Meijerink, A.: Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663 1999CrossRefGoogle ScholarPubMed
7Wegh, R.T., van Loef, E.V.D., Meijerink, A.: Visible quantum cutting via downconversion in LiGdF4: Er3+, Tb3+ upon Er3+ 4f11 → 4f105d excitation. J. Lumin. 90, 111 2000CrossRefGoogle Scholar
8Zhang, Q.Y., Yang, C.H., Pan, Y.X.: Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods. Appl. Phys. Lett. 90, 021107 2007Google Scholar
9Zhang, Q.Y., Yang, C.H., Jiang, Z.H., Ji, X.H.: Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors. Appl. Phys. Lett. 90, 061914 2007CrossRefGoogle Scholar
10Lee, T-J., Luo, L-Y., Cheng, B-M., Diau, W-G., Chen, T-M.: Investigation of Pr3+ as a sensitizer in quantum-cutting fluoride phosphors. Appl. Phys. Lett. 92, 081106 2008CrossRefGoogle Scholar
11Auzel, F.: Upconversion and anti-Stokes processes in f and d ions in solids. Chem. Rev. (Washington, DC) 104, 139 2004CrossRefGoogle Scholar
12Strek, W., Deren, P., Bednarkiewicz, A.: Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions. J. Lumin. 87–89, 999 2000Google Scholar
13Allain, J.Y., Monerie, M., Poignant, H.: Red upconversion Yb-sensitised Pr fluoride fibre laser pumped in 0.8 μm region. Electron. Lett. 27, 1156 1991CrossRefGoogle Scholar
14Baney, D.M., Yang, L., Ratcliff, J., Chang, K.W.: Red and orange Pr3+/Yb3+ doped ZBLAN fibre upconversion lasers. Electron. Lett. 31, 1842 1995CrossRefGoogle Scholar
15Lozano, W., Cid, B., de Arau’jo, B., Egalon, C., Gomes, A.S.L., Costa, B.J., Messaddeq, Y.: Upconversion of infrared-to-visible light in Pr3+–Yb3+ codoped fluoroindate glass. Opt. Commun. 153, 271 1998CrossRefGoogle Scholar
16Brovelli, S., Galli, A., Lorenzi, R., Meinardi, F., Spinolo, G., Tavazzi, S., Sigaev, V., Sukhov, S., Pernice, P., Aronne, A., Fanelli, E., Paleari, A.: Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses. J. Non-Cryst. Solids 353, 2150 2007Google Scholar
17Zhang, Q.Y., Yang, G.F., Jiang, Z.H.: Cooperative downconversion in GdAl3 (BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm). Appl. Phys. Lett. 91, 051903 2007CrossRefGoogle Scholar