Skip to main content Accessibility help
×
Home

Controlled growth of ZnO layers and nanowires using methane as reducing precursor

  • Florian Huber (a1), Anouk Puchinger (a1), Waleed Ahmad (a1), Manfred Madel (a1), Sebastian Bauer (a1) and Klaus Thonke (a1)...

Abstract

Zinc oxide (ZnO) layers and nanowires were grown by chemical vapor deposition (CVD) using methane (CH4) as reducing agent. Compared to conventional CVD processes, which commonly use graphite powder to reduce the ZnO powder source material, this low-cost method allows an improved controllability of the growth processes. Specifically, the consumption of the source material–a commercially available ZnO powder–can be controlled in a very precise way by varying the flow of the reducing CH4 or the re-oxidizing O2. Using this parameter, the growth can be switched between ZnO layers and nanostructures. High-quality ZnO layers have been grown on gallium nitride (GaN) substrates and on c-plane sapphire with an intermediate aluminum nitride (AlN) nucleation layer. By adjusting the growth conditions accordingly, ZnO nanowires were also grown with this method catalyst-free using a- and c-plane sapphire with ZnO nucleation layer as a substrate. The optical properties of the nanowires were investigated by low-temperature photoluminescence (PL) and compared to samples grown by conventional carbo-thermal CVD.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: florian.huber@uni-ulm.de

Footnotes

Hide All

Contributing Editor: Artur Braun

Footnotes

References

Hide All
1. Ramgir, N.S., Yang, Y., and Zacharias, M.: Nanowire-based sensors. Small 6, 17051722 (2010).
2. Guo, L., Zhang, H., Zhao, D., Li, B., Zhang, Z., Jiang, M., and Shen, D.: High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens. Actuators, B 166–167, 1216 (2012).
3. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., and Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 10031009 (2007).
4. Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).
5. Hoffman, R.L., Norris, B.J., and Wager, J.F.: ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733735 (2003).
6. Grundmann, M., Frenzel, H., Lajn, A., Lorenz, M., Schein, F., and von Wenckstern, H.: Transparent semiconducting oxides. Phys. Status Solidi A 207, 14371449 (2010).
7. Du, X.Y., Fu, Y.Q., Tan, S.C., Luo, J.K., Flewitt, A.J., Maeng, S., Kim, S.H., Choi, Y.J., Lee, D.S., Park, N.M., Park, J., and Milne, W.I.: ZnO film for application in surface acoustic wave device. J. Phys.: Conf. Ser. 76, 12035 (2007).
8. Ougazzaden, A., Rogers, D.J., Hosseini Teherani, F., Moudakir, T., Gautier, S., Aggerstam, T., Ould Saad, S., Martin, J., Djebbour, Z., Durand, O., Garry, G., Lusson, A., McGrouther, D., and Chapman, J.N.: Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates. J. Cryst. Growth 310, 944947 (2008).
9. Lipski, F., Thapa, S.B., Hertkorn, J., Wunderer, T., Schwaiger, S., Scholz, F., Feneberg, M., Wiedenmann, M., Thonke, K., Hochmuth, H., Lorenz, M., and Grundmann, M.: Studies towards freestanding GaN in hydride vapor phase epitaxy by in situ etching of a sacrificial ZnO buffer layer. Phys. Status Solidi C 6, S352S355 (2009).
10. Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I.: Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl. Phys. Lett. 61, 26882690 (1992).
11. Maeda, K., Sato, M., Niikura, I., and Fukuda, T.: Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49S54 (2005).
12. Wang, Z.L.: Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl. Phys. A: Mater. Sci. Process. 88, 715 (2007).
13. Wang, X., Iwaki, H., Murakami, M., Du, X., Ishitani, Y., and Yoshikawa, A.: Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface. Jpn. J. Appl. Phys. 42, L99L101 (2003).
14. Ogata, K., Kawanishi, T., Sakurai, K., Kim, S-W., Maejima, K., Fujita, S., and Fujita, S.: Homoepitaxial growth of ZnO by metalorganic vapor phase epitaxy. Phys. Status Solidi B 229, 915919 (2002).
15. Oleynik, N., Adam, M., Krtschil, A., Bläsing, J., Dadgar, A., Bertram, F., Forster, D., Diez, A., Greiling, A., Seip, M., Christen, J., and Krost, A.: Metalorganic chemical vapor phase deposition of ZnO with different O-precursors. J. Cryst. Growth 248, 1419 (2003).
16. Ouerfelli, J., Regragui, M., Morsli, M., Djeteli, G., Jondo, K., Amory, C., Tchangbedji, G., Napo, K., and Bernède, J.C.: Properties of ZnO thin films deposited by chemical bath deposition and post annealed. J. Phys. D: Appl. Phys. 39, 19541959 (2006).
17. Ortega-López, M., Avila-García, A., Albor-Aguilera, M.L., and Sánchez Resendiz, V.M.: Improved efficiency of the chemical bath deposition method during growth of ZnO thin films. Mater. Res. Bull. 38, 12411248 (2003).
18. Steinfeld, A., Brack, M., Meier, A., Weidenkaff, A., and Wuillemin, D.: A solar chemical reaction for co-production of zinc and synthesis gas. Energy 23, 803814 (1998).
19. Ale Ebrahim, H. and Jamshidi, E.: Kinetic study of zinc oxide reduction by methane. Chem. Eng. Res. Des. 79, 6270 (2001).
20. Cheng, J. and Luo, Y.: Modified explosive diagram for determining gas-mixture explosibility. J. Loss Prev. Process Ind. 26, 714722 (2013).
21. Zlochower, I.A. and Green, G.M.: The limiting oxygen concentration and flammability limits of gases and gas mixtures. J. Loss Prev. Process Ind. 22, 499505 (2009).
22. Razus, D., Molnarne, M., and Fuß, O.: Limiting oxygen concentration evaluation in flammable gaseous mixtures by means of calculated adiabatic flame temperatures. Chem. Eng. Process. 43, 775784 (2004).
23. Zabetakis, M.G.: Flammability characteristics of combustible gases and vapors. Technical Report Bulletin 627, U.S. Bureau of Mines (U.S. Dept. of the Interior, Bureau of Mines, Washington D.C., 1965).
24. Reiser, A., Raeesi, V., Prinz, G.M., Schirra, M., Feneberg, M., Röder, U., Sauer, R., and Thonke, K.: Growth of high-quality, uniform c-axis-oriented zinc oxide nano-wires on a-plane sapphire substrate with zinc oxide templates. Microelectron. J. 40, 306308 (2009).
25. Subannajui, K., Ramgir, N., Grimm, R., Michiels, R., Yang, Y., Müller, S., and Zacharias, M.: ZnO nanowire growth: A deeper understanding based on simulations and controlled oxygen experiments. Cryst. Growth Des. 10, 15851589 (2010).
26. Li, Y., Feneberg, M., Reiser, A., Schirra, M., Enchelmaier, R., Ladenburger, A., Langlois, A., Sauer, R., Thonke, K., Cai, J., and Rauscher, H.: Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si. J. Appl. Phys. 99, 54307 (2006).
27. Huber, F., Madel, M., Reiser, A., Bauer, S., and Thonke, K.: New CVD-based method for the growth of high-quality crystalline zinc oxide layers. J. Cryst. Growth 445, 5862 (2016).
28. Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., and Takasu, H.: Uniaxial locked epitaxy of ZnO on the a face of sapphire. Appl. Phys. Lett. 77, 1801 (2000).
29. Kong, B.H. and Cho, H.K.: Growth and microstructural characterization of catalyst-free ZnO nanostructures grown on sapphire and GaN by thermal evaporation. J. Mater. Res. 22, 937942 (2007).
30. Baxter, J.B. and Aydil, E.S.: Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. J. Cryst. Growth 274, 407411 (2005).
31. Weigand, C., Tveit, J., Ladam, C., Holmestad, R., Grepstad, J., and Weman, H.: Epitaxial relationships of ZnO nanostructures grown by Au-assisted pulsed laser deposition on c- and a-plane sapphire. J. Cryst. Growth 355, 5258 (2012).
32. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V.: Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231260 (2004).
33. Schirra, M., Schneider, R., Reiser, A., Prinz, G.M., Feneberg, M., Biskupek, J., Kaiser, U., Krill, C.E., Thonke, K., and Sauer, R.: Stacking fault related 3.31 eV luminescence at 130 meV acceptors in zinc oxide. Phys. Rev. B 77, 125215 (2008).

Keywords

Controlled growth of ZnO layers and nanowires using methane as reducing precursor

  • Florian Huber (a1), Anouk Puchinger (a1), Waleed Ahmad (a1), Manfred Madel (a1), Sebastian Bauer (a1) and Klaus Thonke (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed