Skip to main content Accessibility help

Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally solidified Al–Mn–Be alloy

  • Huijun Kang (a1), Tongmin Wang (a1), Yiping Lu (a1), Jinchuan Jie (a1), Xinzhong Li (a2), Yanqing Su (a2) and Jingjie Guo (a2)...


Three-dimensional (3D) morphological evolution and growth mechanisms of primary I-phase particles have been investigated in directionally solidified Al–6Mn–2.5Be (wt%) alloy at a wide range of growth rates (100–1500 μm/s). At relatively low growth rates (100–600 μm/s), the I-phase particles exhibit faceted growth with strong anisotropy, forming a hierarchical flower-like aggregate with icosahedral morphological symmetry composed of several attached irregular polyhedrons or pentagonal dodecahedrons. At higher growth rates (e.g., 1000 μm/s), the interface of the I-phases becomes unstable along the edges and corners of the pentagonal dodecahedron, thereby arousing growth perturbations. Correspondingly, a transition from faceted to nonfaceted growth occurs with increasing growth rate. Further increase of the growth rate leads to the formation of I-phase columnar dendrites' preferential growth along the 3-fold axis. The configurations of the flower-like aggregates can be adequately illustrated by a geometrical model in terms of the perfect and elongated pentagonal dodecahedrons. A growth mechanism for the flower-like aggregates has been proposed based on the clear understanding of the 3D morphological evolution of the I-phase particles.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).
2.Abe, E., Yan, Y., and Pennycook, S.J.: Quasicrystals as cluster aggregates. Nat. Mater. 3, 759 (2004).
3.Tsai, A.P.: Discovery of stable icosahedral quasicrystals: Progress in understanding structure and properties. Chem. Soc. Rev. 42, 5352 (2013).
4.Zhang, H., Wang, D.H., and Kuo, K.H.: Quasicrystals, crystalline phases, and multiple twins in rapidly solidified Al-Cr alloys. Phys. Rev. B 37, 6220 (1988).
5.Inoue, A., Arnberg, L., Lehtinen, B., Oguchi, M., and Masumoto, T.: Compositional analysis of the icosahedral phase in rapidly quenched Al-Mn and Al-V alloys. Metall. Mater. Trans. A 17, 1657 (1986).
6.Sugawara, T., Edagawa, K., Oda, K., Seki, F., Ito, K., Ino, H., Kimura, K., and Takeuchi, S.: Crystallographic texture of melt-spun Al-Mn based and Al-Li-Cu icosahedral quasicrystals. Scr. Metall. 23, 711 (1989).
7.Dubost, B., Lang, J.M., Tanaka, M., Sainfort, P., and Audier, M.: Large AlCuLi single quasicrystals with triacontahedral solidification morphology. Nature 324, 48 (1986).
8.Tsai, A.P., Niikura, A., Inoue, A., and Masumoto, T.: Stoichiometric icosahedral phase in the Zn-Mg-Y system. J. Mater. Res. 12, 1468 (1997).
9.Hiraga, K.: High-resolution electron microscopy of quasicrystals. MRS Proc. 139, 125 (1989).
10.Luo, Z., Zhang, S., Tang, Y., and Zhao, D.: Quasicrystals in as-cast Mg-Zn-RE alloys. Scr. Metall. Mater. 28, 1513 (1993).
11.Kang, H., Wu, S., Li, X., Guo, J., and Wang, Y.: Improvement of microstructure and mechanical properties of Mg–8Gd–3Y by adding Mg3Zn6Y icosahedral phase alloy. Mater. Sci. Eng., A 528, 5585 (2011).
12.Singh, A., Nakamura, M., Watanabe, M., Kato, A., and Tsai, A.P.: Quasicrystal strengthened Mg–Zn–Y alloys by extrusion. Scr. Mater. 49, 417 (2003).
13.Schurack, F., Eckert, J., and Schultz, L.: Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta Mater. 49, 1351 (2001).
14.Yuan, G., Amiya, K., Kato, H., and Inoue, A.: Structure and mechanical properties of cast quasicrystal-reinforced Mg–Zn–Al–Y base alloys. J. Mater. Res. 19, 1531 (2004).
15.Inoue, A. and Kimura, H.: High-strength aluminum alloys containing nanoquasicrystalline particles. Mater. Sci. Eng., A 286, 1 (2000).
16.Inoue, A., Kimura, H.M., Sasamori, K., and Masumoto, T.: Ultrahigh strength of rapidly solidified Al96-xCr3Ce1Cox (x=1, 1.5 and 2%) alloys containing an icosahedral phase as a main component. Mater. Trans. JIM 35, 85 (1994).
17.Bae, D.H., Kim, S.H., Kim, D.H., and Kim, W.T.: Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater. 50, 2343 (2002).
18.Bae, D.H., Lee, M.H., Kim, K.T., Kim, W.T., and Kim, D.H.: Application of quasicrystalline particles as a strengthening phase in Mg–Zn–Y alloys. J. Alloys Compd. 342, 445 (2002).
19.Kang, H., Wang, T., Li, X., Su, Y., Guo, J., and Fu, H.: Faceted-nonfaceted growth transition and 3-D morphological evolution of primary Al6Mn microcrystals in directionally solidified Al-3at.%Mn alloy. J. Mater. Res. 29, 1256 (2014).
20.Chen, Y. and Wang, H.M.: Growth morphologies and mechanisms of non-equilibrium solidified MC carbide. J. Mater. Res. 21, 375 (2006).
21.Prabhakaran, G. and Murugan, R.: Synthesis of Cu2O microcrystals with morphological evolution from octahedral to microrod through a simple surfactant-free chemical route. CrystEngComm 14, 8338 (2012).
22.Erce-Montilla, R., PiÑero, M., Rosa-Fox, N.d.l., Santos, A., and Esquivias, L.: Control growth of PbS quantum dots doped sono-ormosil. J. Mater. Res. 16, 2572 (2001).
23.Bancel, P.A., Heiney, P.A., Stephens, P.W., Goldman, A.I., and Horn, P.M.: Structure of rapidly quenched Al-Mn. Phys. Rev. Lett. 54, 2422 (1985).
24.Kelton, K.F.: Quasicrystals: Structure and stability. Int. Mater. Rev. 38, 105 (1993).
25.Ho, T.L., Jaszczak, J.A., Li, Y.H., and Saam, W.F.: Faceting in bond-oriented glasses and quasicrystals. Phys. Rev. Lett. 59, 1116 (1987).
26.Ingersent, K. and Steinhardt, P.J.: Equilibrium faceting shapes for quasicrystals. Phys. Rev. B 39, 980 (1989).
27.Kim, S.H., Song, G.S., Fleury, E., Chattopadhyay, K., Kim, W.T., and Kim, D.H.: Icosahedral quasicrystalline and hexagonal approximant phases in the Al-Mn-Be alloy system. Philos. Mag. A 82, 1495 (2002).
28.Song, G.S., Fleury, E., Kim, S.H., Kim, W.T., and Kim, D.H.: Enhancement of the quasicrystal-forming ability in Al-based alloys by Be-addition. J. Alloys Compd. 342, 251 (2002).
29.Song, G.S., Fleury, E., Kim, S.H., Kim, W.T., and Kim, D.H.: Formation and stability of quasicrystalline and hexagonal approximant phases in an Al–Mn–Be Alloy. J. Mater. Res. 17, 1671 (2002).
30.Zupanič, F., Bončina, T., Križman, A., Grogger, W., Gspan, C., Markoli, B., and Spaić, S.: Quasicrystalline phase in melt-spun Al–Mn–Be ribbons. J. Alloys Compd. 452, 343 (2008).
31.Zupanič, F., Bončina, T., Šuštaršič, B., Anžel, I., and Markoli, B.: Microstructure of Al–Mn–Be melt-spun ribbons. Mater. Charact. 59, 1245 (2008).
32.Kang, H., Li, X., Wang, T., Liu, D., Su, Y., Hu, Z., Guo, J., and Fu, H.: Crystal–quasicrystal transition depending on cooling rates in directionally solidified Al–3Mn–7Be (at.%) alloy. Intermetallics 44, 101 (2014).
33.Raynor, G.V., Faulkner, C.R., Noden, J.D., and Harding, A.R.: Ternary alloys formed by aluminium, transitional metals and divalent metals. Acta Metall. 1, 629 (1953).
34.Zupanič, F., Markoli, B., Naglič, I., Weingärtner, T., Meden, A., and Bončina, T.: Phases in the Al-corner of the Al–Mn–Be system. Microsc. Microanal. 19, 1308 (2013).
35.BonČIna, T., Markoli, B., and ZupaniČ, F.: Characterization of cast Al86Mn3Be11 alloy. J. Microsc. 233, 364 (2009).
36.Tsai, A.P., Niikura, A., Inoue, A., Masumoto, T., Nishida, Y., Tsuda, K., and Tanaka, M.: Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems. Philos. Mag. Lett. 70, 169 (1994).
37.Nissen, H.U., Wessicken, R., Beeli, C., and Csanady, A.: Al-Mn quasicrystal aggregates with icosahedral morphological symmetry. Philos. Mag. B 57, 587 (1988).
38.Sekerka, R.F.: Theory of crystal growth morphology. In Crystal Growth – From Fundamentals to Technology, Müller, G., Métois, J. J., and Rudolph, P. ed.; Elsevier Science B.V.: Amsterdam, 2004; p. 55.
39.Bončina, T.: Shapes of the icosahedral quasicrystalline phase in melt-spun ribbons. Metalurgija 52, 65 (2013).
40.Kurz, W. and Fisher, D.J.: Fundamentals of Solidification (Trans Tech Publications Ltd, Switzerland, 1998), p. 21.
41.Sunagawa, I.: Crystals: Growth, Morphology, & Perfection (Cambridge University Press, Cambridge, 2005), p. 10.
42.Tsai, A.P., Inoue, A., and Masumoto, T.: A stable quasicrystal in Al-Cu-Fe system. Jpn. J. Appl. Phys. 26, L1505 (1987).
43.Ohashi, W. and Spaepen, F.: Stable Ga–Mg–Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology. Nature 330, 555 (1987).
44.Murphy, C.J.: Nanocubes and nanoboxes. Science 298, 2139 (2002).
45.Wang, R.Y., Lu, W.H., and Hogan, L.M.: Growth morphology of primary silicon in cast Al–Si alloys and the mechanism of concentric growth. J. Cryst. Growth 207, 43 (1999).
46.Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153 (2000).
47.Chen, L., Wang, H.Y., Luo, D., Zhang, H.Y., Liu, B., and Jiang, Q.C.: Synthesis of octahedron and truncated octahedron primary Mg2Si by controlling the Sb contents. CrystEngComm 15, 1787 (2013).
48.Li, C., Wu, Y.Y., Li, H., and Liu, X.F.: Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys. Acta Mater. 59, 1058 (2011).
49.Dobrushin, R.L., Kotecý, R., and Shlosman, S.: Wulff Construction: A Global Shape from Local Interaction (American Mathematical Society, Providence, 1992), p. 8.
50.Bravais, A.: Etudes Cristallographiques (Gauthier Villars, Paris, 1866), p. 167.
51.Donnay, J.D.H. and Harker, D.: A new law of crystal morphology extending the law of Bravais. Am. Mineral. 22, 446 (1937).
52.Friedel, G.: Studies on the law of Bravais. Bull. Soc. Fr. Mineral. 30, 326 (1907).
53.Shechtman, D. and Blech, I.A.: The microstructure of rapidly solidified Al6Mn. Metall. Trans. A 16, 1005 (1985).


Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally solidified Al–Mn–Be alloy

  • Huijun Kang (a1), Tongmin Wang (a1), Yiping Lu (a1), Jinchuan Jie (a1), Xinzhong Li (a2), Yanqing Su (a2) and Jingjie Guo (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.