Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T08:22:00.668Z Has data issue: false hasContentIssue false

Control of crystalline texture in polycrystalline alumina ceramics by electrophoretic deposition in a strong magnetic field

Published online by Cambridge University Press:  03 March 2011

T. Uchikoshi
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
T.S. Suzuki
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
H. Okuyama
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
Y. Sakka
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

Highly crystalline-textured pure dense alumina ceramics were fabricated from spherical alumina powder without any seed particles and sintering additives by electrophoretic deposition (EPD) in a strong magnetic field of 10 T. The crystalline texture was confirmed by x-ray diffraction (XRD) for alumina ceramics deposited at 10 T followed by sintering at 1873 K. The angle between the directions of the magnetic and electric fields (φB-E) was altered to control the dominant crystal faces of the α-alumina monoliths. The average orientation angles estimated from the XRD diagram of the samples prepared at φB-E = 0°, 45°, and 90° were 16.52°, 45.15°, and 84.90°, respectively. Alumina/alumina laminar composites with different crystalline-oriented layers were also fabricated by alternately changing the φB-E layer by layer during EPD in a 10 T magnetic field. It was demonstrated that by using this technique, it is possible to control the crystalline orientation by changing the angle of E versus B during the EPD.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Suvaci, E. and Messing, G.L., J. Am. Ceram. Soc. 83, 2041 (2000).CrossRefGoogle Scholar
2Hirao, K., Ohashi, M., Brito, M.E. and Kanzaki, S., J. Am. Ceram. Soc. 78, 1687 (1995).CrossRefGoogle Scholar
3Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19, 31 (1980).CrossRefGoogle Scholar
4Ma, Y. and Bowman, K.J., J. Am. Ceram. Soc. 74, 2941 (1991).CrossRefGoogle Scholar
5Yoshizawa, Y., Toriyama, M. and Kanzaki, S., J. Am. Ceram. Soc. 84, 1392 (2001).CrossRefGoogle Scholar
6Stubican, V.S. and Bradt, R.C., Annu. Rev. Mater. Sci. 11, 267 (1981).CrossRefGoogle Scholar
7Hong, S.H. and Messing, G.L., J. Am. Ceram. Soc. 82, 867 (1999).CrossRefGoogle Scholar
8Suvaci, E., Oh, K-S. and Messing, G.L., Acta Mater. 49, 2075 (2001).CrossRefGoogle Scholar
9Seabaugh, M.M., Kerscht, I.H. and Messing, G.L., J. Am. Ceram. Soc. 80, 1181 (1997).CrossRefGoogle Scholar
10Brandon, D., Chen, D. and Chan, H., Mater. Sci. Eng. A 195, 189 (1995).CrossRefGoogle Scholar
11De Rango, P., Less, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P. and Pernet, M., Nature 349, 770 (1991).CrossRefGoogle Scholar
12Suzuki, T.S., Sakka, Y. and Kitazawa, K., Adv. Eng. Mater. 3, 490 (2001).3.0.CO;2-O>CrossRefGoogle Scholar
13Suzuki, T.S. and Sakka, Y., Jpn. J. Appl. Phys. 41 L1272 (2002).Google Scholar
14Sakka, Y., Suzuki, T.S., Tanabe, N., Asai, S. and Kitazawa, K., Jpn. J. Appl. Phys. 41 L1416 (2002).CrossRefGoogle Scholar
15Suzuki, T.S. and Sakka, Y., Key Eng. Mater. 248, 191 (2003).CrossRefGoogle Scholar
16Suzuki, T.S. and Sakka, Y., Chem. Lett. 12, 1204 (2002).CrossRefGoogle Scholar
17Suzuki, T.S., Sakka, Y. and Kitazawa, K., J. Ceram. Soc. Jpn. 109, 886 (2001).CrossRefGoogle Scholar
18Uchikoshi, T., Suzuki, T.S., Okuyama, H. and Sakka, Y., J. Mater. Res. 18, 254 (2003).CrossRefGoogle Scholar
19Uchikoshi, T., Suzuki, T.S., Okuyama, H. and Sakka, Y., Electrophoretic Deposition: Fundamentals and Applications. ECS Procs. 2002–21, 9 (2002).Google Scholar
20Uchikoshi, T., Suzuki, T.S., Okuyama, H. and Sakka, Y., J. Mater. Sci. 39, 861 (2004).CrossRefGoogle Scholar
21Uchikoshi, T., Suzuki, T.S., Okuyama, H. and Sakka, Y., J. Eur. Ceram. Soc. 24, 225 (2004).CrossRefGoogle Scholar
22Sarkar, P. and Nicholson, P.S., J. Am. Ceram. Soc. 79, 1987 (1996).CrossRefGoogle Scholar
23Zhitomirsky, I., Adv. Colloid & Interface Sci. 97, 279 (2002).CrossRefGoogle Scholar
24Boccaccini, A.R. and Zhitomirsky, I., Curr. Opin. Solid State Mater. Sci. 6, 251 (2002).CrossRefGoogle Scholar
25Uchikoshi, T., Suzuki, T.S., Okuyama, H, and Sakka, Y: Trans. Mater. Res. Soc. Jpn. (in press).Google Scholar
26Uchikoshi, T, Suzuki, T.S., Tang, F., Okuyama, H., and Sakka, Y.:Ceram. Int.(in press)Google Scholar
27Uchikoshi, T., Ozawa, K., Hatton, B.D. and Sakka, Y., J. Mater. Res. 16, 321 (2001).CrossRefGoogle Scholar
28Cullity, B.D., Elements of X-ray Diffraction (Addison Wesley, London, 1959), p. 460Google Scholar
29 JCPDS No. 10-173. International Center for Diffraction Data Newton Square, PAGoogle Scholar
30Tahashi, M., Ishihara, M., Sassa, K. and Asai, S., Mater. Trans. 44, 285 (2003).CrossRefGoogle Scholar