Skip to main content Accessibility help

Continuum approaches for modeling radiation-induced self-organization in materials: From the rate theory to the phase field approach

  • David Simeone (a1), Joel Ribis (a1) and Laurence Luneville (a1)


Microstructural patterns resulting from self-organization are responsible for phase transitions and property changes in many materials maintained far from the thermodynamic equilibrium. Understanding the origin and the selection of possible spatiotemporal patterns for dissipative systems, i.e., systems for which the energy is not conserved, is a major theme of research opening doors to many technological applications ranging from plasmonics to metamaterials. Almost forty years after Turing’s seminal paper on patterning, progress on modeling instabilities leading to pattern formation has been achieved. The first part of this work demonstrates that main field approaches succeeded in capturing the underlying physics responsible for the formation of radiation-induced spatiotemporal patterns experimentally observed. The second part of the text highlights the interest of the phase field method, a self-consistent mean field approach, to discuss the evolution of these patterns in a universal picture neglecting specific aspects of radiation-induced dynamics.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1. Millet, P. and Tonks, M.: Application of phase-field modeling to irradiation effects in materials. Curr. Opin. Solid State Mater. Sci. 15, 125 (2011).
2. Li, Y., Hu, S., and Stan, M.: Application of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. npj Comput. Mater. 3, 16 (2017).
3. Hu, S. and Lu, W.: Dynamics of the self assembly of nanovoids and nanobubbles in solids. Acta Mater. 53, 1799 (2005).
4. Hu, S. and Henager, C.: Phase-field modeling of void lattice formation under irradiation. J. Nucl. Mater. 394, 155 (2009).
5. Hu, S., Burkes, E., Lavender, C., Senor, J., Setyawan, W., and Xu, Z.: Formation mechanism of gaz bubble superlattice in UMo metal fuels: Phase-field modeling investigation. J. Nucl. Mater. 479, 202 (2016).
6. Khatchaturyan, A.G.: Theory of Structural Transformation in Solids (Wiley Interscience, New York, New York, 1983).
7. Tolédano, P. and Dmitriev, V.: Reconstructive Phase Transitions: In Crystals and Quasicrystals (World Scientific, Singapore, 1996).
8. Elder, K., Katakowski, M., Haataja, M., and Grant, M.: Modelling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002).
9. Ghoniem, N. and Walgraef, D.: Instabilities and Self Organization in Materials, Vol. I (Oxford Science Publications, Oxford, United Kingdom, 2008).
10. Nicolis, G. and Prigogine, I.: Self Organization in Nonequilibrium Systems: From Dissipative Structure to Order through Fluctuations (Wiley, New York, 1977).
11. Van Kampen, G.: Processes in Physics and Chemistry (Amsterdam, New York, 1980).
12. Simeone, D., Costantini, J., Luneville, L., Desgranges, L., Trocellier, P., and Garcia, P.: Focus issue: Characterization and modeling of radiation damage on materials: State of the art, challenges, and protocols. J. Mater. Res. 30, 1495 (2015).
13. Krishan, K.: Self-organization and void ordering during irradiation. Nature 287, 420 (1980).
14. Jager, W., Erhart, D., Schilling, W., Dworschak, F., Gadalla, A., and Tsukuda, N.: Peroidic 001 walls of defects in proton-irradiated Cu and Ni. Mater. Sci. Forum 15–18, 881888 (1988).
15. Jager, W. and Trinkaus, H.: Defect ordering in metals under irradiation. J. Nucl. Mater. 205, 3949 (1993).
16. Karlin, S. and Taylor, H.M.: A First Course in Stochastic Processes (Academic Press, New York, 1975).
17. Gillespie, D.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35 (2007).
18. Binder, K. and Stauffer, D.: Statistical theory of nucleation, condensation and coagulation. J. Adv. Phys. 25, 343 (1976).
19. Waite, T.: General theory of bimolecular reaction rates in solids and liquids. J. Chem. Phys. 28, 103 (1958).
20. Abromeit, C. and Wollenberg, H.: Elements of the radiation-induced structural self-organisation in materials. J. Mater. Res. 3, 640 (1988).
21. Nichols, F.: On the estimation of sink-absorption terms in reaction-rate-theory analysis of radiation damage. J. Nucl. Mater. 75, 32 (1978).
22. Sigmund, P. and Gras-Marti, A.: Theoretical aspects of atomic mixing by ion beams. Nucl. Instrum. Methods Phys. Res., Sect. B 182, 211219 (1981).
23. Simeone, D. and Luneville, L.: Concentration profile distortion under ion beam mixing: An example of levy flight. Phys. Rev. E 81, 021115 (2010).
24. Kiritani, M.: Radiation effect in breeder reactor structural materials. In Radiation Effects in Breeder Reactor Structural Materials: International Conference June 19-23, 1977, Camelback Inn, Scottsdale, Arizona (1977); p. 1023.
25. Brailsford, A. and Bullough, R.: The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121 (1972).
26. Dunlop, A., Rullier-Albenque, F., Jaouen, C., Templier, C., and Davenas, J.: Materials under Irradiation (Trans Tech Publication, Les Ulis, France, 1993).
27. Maydet, S. and Russel, K.: Precipitate stability under irradiation: Point defect effects. J. Nucl. Mater. 64, 101 (1977).
28. Sizmann, R.: The effect of radiation upon diffusion in metals. J. Nucl. Mater. 69, 386412 (1978).
29. Berge, P., Pomeau, Y., and Vidal, C.: L’ordre dans le chaos (Hermann Paris, Paris, France, 1984).
30. Somorjai, R.: Physical Chemistry, Vol. XI-B (Academic Press, New York, 1975).
31. Cross, M.C. and Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112 (1993).
32. Sikka, V. and Moteff, J.: Superlattice of voids in neutron-irradiated tungsteno. J. Appl. Phys. 43, 4942 (1972).
33. Beauford, M., Vallet, M., Nicolai, J., and Bardot, J.: In situ evolution of he bubbles in sic under irradiation. J. Appl. Phys. 118, 205904 (2015).
34. Walgraef, D.: Spatio-Temporal Pattern Formation (With Examples in Physics, Chemistry and Materials Science) (Springer-Verlag, New York, New York, 1996).
35. Pomeau, Y. and Manneville, P.: Stability and fluctuation of a spatially periodic convective flow. J. Phys., Lett. 40, 609612 (1979).
36. Coullet, P., Emilsson, K., and Plaza, F.: Instabilities in Nonequilibrium Structures III (Kluwer, Dorrecht, 1991).
37. Le Bellac, M., Mortessagne, F., and Batrouni, G.: Equilibrium and Non Equilibrium Statistical Thermodynamics (Cambridge University Press, Cambridge, United Kingdom, 2010).
38. Martin, G.: Phase stability under irradiation: Ballistic effects. Phys. Rev. B 30, 53 (1984).
39. Bergersen, B. and Racz, Z.: Dynamical generation of long-range interactions: Random levy flights in kinetic ising and spherical models. Phys. Rev. Lett. 67, 3047 (1991).
40. Huston, E.L., Cahn, J.W., and Hilliard, J.E.: Spinodal decomposition during continuous cooling. Acta Metall. 14, 1053 (1966).
41. Adda, Y., Beyeler, M., and Brebec, G.: Monte Carlo simulation of phase separation in chemically reactive binary mixture. Thin Solid Films 25, S28 (1975).
42. Tsaur, B., Lau, S., and Mayer, J.: Continuous series of metastable agcu solid solutions formed by ion beam mixing. Appl. Phys. Lett. 36, 823 (1980).
43. Chen, L. and Khatchaturyan, A.: Dynamics of simultaneous orderring and phase separation and effect of long range coulomb interactions. Phys. Rev. Lett. 70, 1477 (1993).
44. Demange, G., Luneville, L., Pontikis, V., and Simeone, D.: Prediction of irradiation induced microstructures using a multiscale method coupling atomistic and phase field modeling: Application to the agcu model alloy. J. Appl. Phys. 121, 125108125122 (2017).
45. Bray, A.J.: Theory of phase-ordering kinetics. J. Adv. Phys. 43, 357459 (1994).
46. Luneville, L., Mallick, K., Pontikis, V., and Simeone, D.: Patterning in systems driven by non local external forces. Phys. Rev. E 94, 052126 (2016).
47. Ohta, T. and Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621 (1986).
48. Simeone, D., Demange, G., and Luneville, L.: Disrupted coarsening in complex Cahn–Hilliard dynamics. Phys. Rev. E 88, 032116 (2013).
49. Opplestrup, T., Bulatov, V., Gilmer, G., Kalos, M., and Sadigh, B.: First passage monte-carlo algorithm: Diffusion without all the hops. Phys. Rev. Lett. 97, 230602 (2006).
50. Biron, I.: Thesis: Corsening Kinetics Induced by Irradiation in Pb Glasses (Orsay University, Paris, France, 1988).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed