Skip to main content Accessibility help

Contact fatigue of silicon

  • Sanjit Bhowmick (a1), Juan José Meléndez-Martínez (a2) and Brian R. Lawn (a1)


Macroscopic cracks in bulk silicon are generally considered to be immune to fatigue. Here, evidence for pronounced fracture-related fatigue damage in cyclic contact loading of (001) monocrystalline silicon with hard spheres of millimeter-scale radius is presented. The periodic indentation field generates ring cracks around the contact, which proliferate with continued cycling. Copious debris in the form of slabs and particulates is ejected from within the crack walls onto the specimen surface. Continued ejection leads ultimately to large-scale surface removal. The fatigue damage progressively degrades the material strength, more rapidly at higher contact load. Implications concerning the function of silicon devices, including microelectro-mechanical systems, will be briefly discussed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Bradby, J.G., Williams, J.S., Wong-Leung, J., Swain, M.V.Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 2001
2Bradby, J.G., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V.Munroe, P.: Spherical indentation of compound semiconductors. Philos. Mag. A 82, 1931 2002
3Zarudi, I., Zhang, L.C.Swain, M.V.: Microstructure evolution in monocrystalline silicon in cyclic microindentations. J. Mater. Res. 18, 758 2003
4Zarudi, I., Zhang, L.C.Swain, M.V.: Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter. Appl. Phys. Lett. 82, 1027 2003
5Zarudi, I., Zhang, L.C.Swain, M.V.: Effect of water on the mechanical response of monocrystalline silicon to repeated microindentation. Key Eng. Mater. 233-236, 609 2003
6Zarudi, I., Zou, J., McBride, W.Zhang, L.C.: Amorphous structures induced in monocrystalline silicon by mechanical loading. Appl. Phys. Lett. 85, 932 2004
7Lawn, B.R.: Fracture and deformation in brittle solids: A perspective on the issue of scale. J. Mater. Res. 19, 22 2004
8Jung, Y-G., Pajares, A., Banerjee, R.Lawn, B.R.: Strength of silicon, sapphire and glass in the subthreshold flaw region. Acta Mater. 52, 3459 2004
9Cook, R.F.: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841 2006
10Jaccodine, R.J.: Surface energy of germanium and silicon. J. Electrochem. Soc. 109, C203 1962
11Chen, C.P.Leopold, M.H.: Fracture toughness of silicon. Am. Ceram. Soc. Bull. 59, 469 1980
12Chen, T.J.Knapp, W.J.: The fracture of single-crystal silicon under various environments. J. Am. Ceram. Soc. 63, 225 1980
13Lawn, B.R., Marshall, D.B.Chantikul, P.: Mechanics of strength degrading flaws in silicon. J. Mater. Sci. 16, 1769 1981
14Michalske, T.A.Freiman, S.W.: A molecular interpretation of stress corrosion in silica. Nature 295, 511 1981
15Renuart, E.D., Fitzgerald, A.M., Kenny, T.W.Dauskardt, R.H.: Fatigue crack growth in micromachined single-crystal silicon. J. Mater. Res. 19, 2635 2004
16Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S.Heuer, A.H.: The fracture toughness of polysilicon devices: A first report. J. Mater. Res. 12, 915 1997
17Kahn, H., Ballarini, R., Mullen, R.L.Heuer, A.H.: Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc. R. Soc. London Ser. A 455, 3807 1999
18Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L.Heuer, A.H.: Fracture toughness of polysilicon MEMS devices. Sens. Actuators, A 82, 274 2000
19Kahn, H., Ballarini, R., Bellante, J.J.Heuer, A.H.: Fatigue failure in polysilicon not due to simple stress corrosion cracking. Science 298, 1215 2002
20Kahn, H., Ballarini, R.Heuer, A.H.: Dynamic fatigue of silicon. Curr. Opin. Solid State Mater. Sci. 8, 71 2004
21Muhlstein, C.L., Brown, S.B.Ritchie, R.O.: High-cycle fatigue and durability of polycrystalline silicon thin films in air. Sens. Actuators, A 94, 177 2001
22Muhlstein, C.L., Stach, E.A.Ritchie, R.O.: A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579 2002
23Shrotriya, P., Allameh, S., Brown, S., Suo, Z.Soboyejo, W.O.: Fatigue damage evolution in silicon films for micromechanical applications. Exp. Mech. 43, 289 2003
24Alsem, D.A., Pierron, O.N., Stach, E.A., Muhlstein, C.L.Ritchie, R.O.: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9, 15 2007
25Pierron, O.N.Muhlstein, C.L.: The role of debris-induced cantilever effects in cyclic fatigue of micron-scale silicon films. Fatigue Fract. Eng. Mater. Struct. 30, 57 2007
26Lawn, B.R.: Hertzian fracture in single crystals with the diamond structure. J. Appl. Phys. 39, 4828 1968
27Lawn, B.R.: Indentation of ceramics with spheres: A century after Hertz. J. Am. Ceram. Soc. 81, 1977 1998
28Bhowmick, S., Meléndez-Martínez, J.J.Lawn, B.R.: Bulk silicon is susceptible to fatigue. Appl. Phys. Lett. 91, 201902 2007
29Chai, H., Lawn, B.R.Wuttiphan, S.: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 1999
30Miranda, P., Pajares, A., Guiberteau, F., Deng, Y.Lawn, B.R.: Designing damage-resistant brittle-coating structures: I. Bilayers. Acta Mater. 51, 4347 2003
31Howes, V.R.Tolansky, S.: Pressure crack figures on diamond faces: I. The octahedral face. Proc. R. Soc. London Ser. A 230, 287 1955
32Howes, V.R.Tolansky, S.: Pressure crack figures on diamond faces: II. The dodecahedral and cubic faces. Proc. R. Soc. London Ser. A 230, 294 1955
33Johnson, K.L.: Contact Mechanics Cambridge University Press London, UK 1985
34Frank, F.C.Lawn, B.R.: On the theory of hertzian fracture. Proc. R. Soc. London Ser. A 299, 291 1967
35Kapels, H., Aigner, R.Binder, J.: Fracture strength and fatigue of polysilicon determined by a novel thermal actuator. IEEE Trans. Electron Dev. 47, 1522 2000
36Sharpe, W.N., Jackson, K.M., Hemker, K.J.Xie, Z.L.: Effect of specimen size on young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10, 317 2001
37Bagdahn, N.Sharpe, W.N.: Fatigue of polycrystalline silicon under long-term cyclic loading. Sens. Actuators, A: Phys. 103, 9 2003
38Williams, J.S., Lawn, B.R.Swain, M.V.: Cone crack closure in brittle solids. Phys. Status Solidi A 2, 7 1970
39Lathabai, S., Rödel, J.Lawn, B.R.: Cyclic fatigue from frictional degradation at bridging grains in alumina. J. Am. Ceram. Soc. 74, 1340 1991
40Lawn, B.R., Padture, N.P., Cai, H.Guiberteau, F.: Making ceramics ‘ductile’. Science 263, 1114 1994
41Padture, N.P.Lawn, B.R.: Contact fatigue of a silicon carbide with a heterogeneous grain structure. J. Am. Ceram. Soc. 78, 1431 1995
42Tolansky, S.Howes, V.R.: Induction of ring cracks on diamond surfaces. Proc. Phys. Soc. London Ser. B 70, 521 1957
43Lawn, B.R.: Partial cone crack formation in a brittle material loaded with a sliding indenter. Proc. R. Soc. London Ser. A 299, 307 1967


Related content

Powered by UNSILO

Contact fatigue of silicon

  • Sanjit Bhowmick (a1), Juan José Meléndez-Martínez (a2) and Brian R. Lawn (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.