Skip to main content Accessibility help

Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation

  • Fan Zhang (a1), Liping Wang (a1), Mei Xiao (a1), Fei Liu (a1), Xia Xu (a1) and Erdeng Du (a1)...


The novel visible-light-responsive direct solid-state Z-scheme g-C3N4/BiOI heterojunction has been synthesized successfully by means of a solid phase calcination method and used for the degradation of microcystin-LR (MC-LR). The layered g-C3N4 disperses on the surface of BiOI microspheres. The samples are characterized by FESEM, HRTEM, XRD, FT-IR, UV-vis spectroscopy, XPS, BET, PL, and Mott–Sckottky. The photocatalytic activity and photodegradation mechanism of the as-prepared g-C3N4/BiOI microsphere photocatalysts are conducted under visible light irradiation using MC-LR as the target pollutant. The g-C3N4/BiOI material exhibits superior photocatalytic performance when compared with pure BiOI, the possible reason is the efficient separation of photogenerated carriers at the interface between g-C3N4 and BiOI. The heterostructure is responsible for the improved separation efficiency of photogenerated electron–hole pairs and thus the higher photocatalytic activity. The possible photocatalytic mechanism is proposed based on relative band positions of these two semiconductors.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Xiaobo Chen



Hide All
1. Park, J.A., Yang, B., Park, C., Choi, J.W., van Genuchten, C.M., and Lee, S.H.: Oxidation of microcystin-LR by the Fenton process: Kinetics, degradation intermediates, water quality and toxicity assessment. Chem. Eng. J. 309, 339 (2017).
2. Upadhyayula, V.K.K., Deng, S.G., Mitchell, M.C., and Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 40, 1 (2009).
3. Song, C.J., Wang, L.P., Ren, J., Lv, B., Sun, Z.H., Yan, J., Li, X.Y., and Liu, J.J.: Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: Kinetics, mechanism, and effects of operational parameters. Environ. Sci. Pollut. Res. 23, 2640 (2016).
4. Wang, Q., Xie, P., Chen, J., and Liang, G.: Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52, 721 (2008).
5. Dawson, R.M.: The toxicology of microcystins. Toxicon 36, 953 (1998).
6. Zhang, D., Liao, Q., Zhang, L., Wang, D., Luo, L., Chen, Y., Zhong, J., and Liu, J.: Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China. Ecotoxicology 24, 19 (2015).
7. He, X.X., Zhang, G.S., de la Cruz, A.A., O’Shea, K.E., and Dionysiou, D.D.: Degradation mechanism of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals in homogeneous UV/H2O2 process. Environ. Sci. Technol. 48, 4495 (2014).
8. Onstad, G.D., Strauch, S., Meriluoto, J., Codd, G.A., and von Gunten, U.: Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environ. Sci. Technol. 41, 4397 (2007).
9. Song, C.J., Li, X.Y., Wang, L.P., and Shi, W.D.: Fabrication, characterization and response surface method (RSM) optimization for tetracycline photodegration by Bi3.84W0.16O6.24–graphene oxide (BWO–GO). Sci. Rep. 6, 12 (2016).
10. Hong, Y., Fang, Z., Yin, B., Luo, B., Zhao, Y., Shi, W., and Li, C.: A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst. Int. J. Hydrogen Energy 42, 6738 (2017).
11. Song, C.J., Feng, Y., Shi, W.D., and Liu, C.B.: Fabrication and mechanism of a novel direct solid-state Z-scheme photocatalyst CdS/BiOI under visible light. CrystEngComm 18, 7796 (2016).
12. Hao, R., Xiao, X., Zuo, X.X., Nan, J.M., and Zhang, W.D.: Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater. 209, 137 (2012).
13. Chen, L.L., Jiang, D.L., He, T., Wu, Z.D., and Chen, M.: In situ ion exchange synthesis of hierarchical AgI/BiOI microsphere photocatalyst with enhanced photocatalytic properties. CrystEngComm 15, 7556 (2013).
14. Xu, X.J., Hu, L.F., Gao, N., Liu, S.X., Wageh, S., Al-Ghamdi, A.A., Alshahrie, A., and Fang, X.S.: Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25, 445 (2015).
15. Lee, H.S., Kim, J.E., Kim, T., and Suh, K.S.: Ionic liquid-assisted synthesis of highly branched Ag:AgCl hybrids and their photocatalytic activity. J. Alloys Compd. 621, 378 (2015).
16. Zheng, L.X., Han, S.C., Liu, H., Yu, P.P., and Fang, X.S.: Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527 (2016).
17. Li, P., Zhao, X., Jia, C.J., Sun, H.G., Sun, L.M., Cheng, X.F., Liu, L., and Fan, W.L.: ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: The case of interface lattice and energy level match. J. Mater. Chem. A 1, 3421 (2013).
18. Cao, J., Xu, B.Y., Lin, H.L., and Chen, S.F.: Highly improved visible light photocatalytic activity of BiPO4 through fabricating a novel p–n heterojunction BiOI/BiPO4 nanocomposite. Chem. Eng. J. 228, 482 (2013).
19. He, K.L., Xie, J., Luo, X.Y., Wen, J.Q., Ma, S., Li, X., Fang, Y.P., and Zhang, X.C.: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)(x) cocatalysts. Chin. J. Catal. 38, 240 (2017).
20. Luo, B.F., Chen, M., Zhang, Z.Y., Xu, J., Li, D., Xu, D.B., and Shi, W.D.: Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst. Dalton Trans. 46, 8431 (2017).
21. Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).
22. Wen, J.Q., Xie, J., Zhang, H.D., Zhang, A.P., Liu, Y.J., Chen, X.B., and Li, X.: Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl. Mater. Interfaces 9, 14031 (2017).
23. Wu, F.J., Li, X., Liu, W., and Zhang, S.T.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).
24. Zhu, B.C., Xia, P.F., Li, Y., Ho, W.K., and Yu, J.G.: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 391, 175 (2017).
25. Chen, J., Shen, S.H., Guo, P.H., Wang, M., Su, J.Z., Zhao, D.M., and Guo, L.J.: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29, 64 (2014).
26. Chai, B., Zou, F.Y., and Chen, W.J.: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30, 1128 (2015).
27. Fang, W., Yu, C.L., Li, J.D., Zhou, W.Q., and Zhu, L.H.: Thermostability and photocatalytic performance of BiOCl0.5Br0.5 composite microspheres. J. Mater. Res. 30, 3125 (2015).
28. Wang, M., Fang, M.H., Tang, C., Zhang, L.N., Huang, Z.H., Liu, Y.G., and Wu, X.W.: A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).
29. Cui, L.F., Ding, X., Wang, Y.G., Shi, H.C., Huang, L.H., Zuo, Y.H., and Kang, S.F.: Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 391, 202 (2017).
30. Ye, L.Q., Liu, X.D., Zhao, Q., Xie, H.Q., and Zan, L.: Dramatic visible light photocatalytic activity of MnO x –BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. J. Mater. Chem. A 1, 8978 (2013).
31. Song, C.J., Fan, M.S., Hu, B., Chen, T.J., Wang, L.P., and Shi, W.D.: Synthesis of a g-C3N4-sensitized and NaNbO3-substrated II-type heterojunction with enhanced photocatalytic degradation activity. CrystEngComm 17, 4575 (2015).
32. Masih, D., Ma, Y.Y., and Rohani, S.: Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal., B 206, 556 (2017).
33. Zhou, Z.X., Shen, Y.F., Li, Y., Liu, A.R., Liu, S.Q., and Zhang, Y.J.: Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACS Nano 9, 12480 (2015).
34. Zhang, J.S., Zhang, G.G., Chen, X.F., Lin, S., Mohlmann, L., Dolega, G., Lipner, G., Antonietti, M., Blechert, S., and Wang, X.C.: Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed. 51, 3183 (2012).
35. Ma, T.Y., Cao, J.L., Jaroniec, M., and Qiao, S.Z.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 55, 1138 (2016).
36. Ferrighi, L., Datteo, M., Fazio, G., and Di Valentin, C.: Catalysis under cover: Enhanced reactivity at the interface between (doped) graphene and anatase TiO2 . J. Am. Chem. Soc. 138, 7365 (2016).
37. Amador, A.G. and Yoon, T.P.: A chiral metal photocatalyst architecture for highly enantioselective photoreactions. Angew. Chem., Int. Ed. 55, 2304 (2016).
38. Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S., and Dubertret, B.: Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934 (2016).
39. Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., and Chai, S.P.: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116, 7159 (2016).
40. Li, J., Cai, L.J., Shang, J., Yu, Y., and Zhang, L.Z.: Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 28, 4059 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed