## REFERENCES

1.
Brazhkin, V., Dubrovinskaia, N., Nicol, M., Novikov, N., Riedel, R., Solozhenko, V., and Zhao, Y.: From our readers: What does ‘harder than diamond’ mean?
Nat. Mater.
3, 576 (2004).

2.
Liu, A.Y. and Cohen, M.L.: Prediction of new low compressibility solids. Science
245, 841 (1989).

3.
Zhang, M., Wei, Q., Yan, H., Zhao, Y., and Wang, H.: A novel superhard tetragonal carbon mononitride. J. Phys. Chem. C
118, 3202 (2014).

4.
Hart, J.N., Claeyssens, F., Allan, N.L., and May, P.W.: Carbon nitride: *Ab initio* investigation of carbon-rich phases. Phys. Rev. B
80, 174111 (2009).

5.
Tian, F., Wang, J., He, Z., Ma, Y., Wang, L., Cui, T., Chen, C., Liu, B., and Zou, G.: Superhard semiconducting C_{3}N_{2} compounds predicted via first-principles calculations. Phys. Rev. B
78, 235431 (2008).

6.
Hao, J., Liu, H., Lei, W., Tang, X., Lu, J., Liu, D., and Li, Y.: Prediction of a superhard carbon-rich C–N compound comparable to diamond. J. Phys. Chem. C
119, 28614 (2015).

7.
Sandré, É., Pickard, C.J., and Colliex, C.: What are the possible structures for CN_{
x
} compounds? The example of C_{3}N. Chem. Phys. Lett.
325, 53 (2000).

8.
Hu, Q., Wu, Q., Wang, H., He, J., and Zhang, G.: First-principles studies of structural and electronic properties of layered C_{3}N phases. Phys. Status Solidi B
249, 784 (2012).

9.
Dong, H., Oganov, A.R., Zhu, Q., and Qian, G-R.: The phase diagram and hardness of carbon nitrides. Sci. Rep.
5, 9870 (2015).

10.
Goettmann, F., Fischer, A., Antonietti, M., and Thomas, A.: Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed.
45, 4467 (2006).

11.
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater.
8, 76 (2008).

12.
Pati, S.K., Enoki, T., and Rao, C.N.R.: Graphene and its Fascinating Attributes (World Scientific, Singapore, 2011).

13.
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science
321, 385 (2008).

14.
Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W-X., Fu, Q., Ma, X., Xue, Q., Sun, G., and Bao, X.: Toward N-doped graphene via solvothermal synthesis. Chem. Mater.
23, 1188 (2011).

15.
Zhao, L., He, R., Rim, K.T., Schiros, T., Kim, K.S., Zhou, H., Gutiérrez, C., Chockalingam, S.P., Arguello, C.J., Pálová, L., Nordlund, D., Hybertsen, M.S., Reichman, D.R., Heinz, T.F., Kim, P., Pinczuk, A., Flynn, G.W., and Pasupathy, A.N.: Visualizing individual nitrogen dopants in monolayer graphene. Science
333, 999 (2011).

16.
Mizuno, S., Fujita, M., and Nakao, K.: Electronic states of graphitic heterocompounds of carbon, boron and nitrogen. Synth. Met.
71, 1869 (1995).

17.
Xiang, H.J., Huang, B., Li, Z.Y., Wei, S-H., Yang, J.L., and Gong, X.G.: Ordered semiconducting nitrogen-graphene alloys. Phys. Rev. X
2, 011003 (2012).

18.
Mahmood, J., Lee, E.K., Jung, M., Shin, D., Choi, H-J., Seo, J-M., Jung, S-M., Kim, D., Li, F., Lah, M.S., Park, N., Shin, H-J., Oh, J.H., and Baek, J-B.: Two-dimensional polyaniline (C_{3}N) from carbonized organic single crystals in solid state. PNAS
113, 7414 (2016).

19.
Yang, S., Li, W., Ye, C., Wang, G., Tian, H., Zhu, C., He, P., Ding, G., Xie, X., Liu, Y., Lifshitz, Y., Lee, S-T., Kang, Z., and Jiang, M.: C_{3}N—A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater.
29, 1605625 (2017).

20.
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B
54, 11169 (1996).

21.
Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
6, 15 (1996).

22.
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B
50, 17953 (1994).

23.
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett.
77, 3865 (1996).

24.
Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened Coulomb potential” [*J. Chem. Phys.*
**118**, 8207 (2003)]. J. Chem. Phys.
124, 219906 (2006).

25.
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B
13, 5188 (1976).

26.
King, T.C., Matthews, P.D., Holgado, J.P., Jefferson, D.A., Lambert, R.M., Alavi, A., and Wright, D.S.: A single-source route to bulk samples of C_{3}N and the co-evolution of graphitic carbon microspheres. Carbon
64, 6 (2013).

27.
Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys.
73, 515 (2001).

28.
Liu, F., Ming, P., and Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B
76, 064120 (2007).

29.
Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn.
12, 570 (1957).

30.
Wang, C.S. and Callaway, J.: Band structure of nickel: Spin–orbit coupling, the Fermi surface, and the optical conductivity. Phys. Rev. B
9, 4897 (1974).

31.
Mostofi, A.A., Yates, J.R., Lee, Y-S., Souza, I., Vanderbilt, D., and Marzari, N.: wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun.
178, 685 (2008).

32.
Roundy, D. and Cohen, M.L.: Ideal strength of diamond, Si, and Ge. Phys. Rev. B
64, 212103 (2001).

33.
Luo, W., Roundy, D., Cohen, M.L., and Morris, J.W. Jr.: Ideal strength of bcc molybdenum and niobium. Phys. Rev. B
66, 094110 (2002).

34.
Cheng, Y.C., Zhu, Z.Y., Huang, G.S., and Schwingenschlögl, U.: Grüneisen parameter of the G mode of strained monolayer graphene. Phys. Rev. B
83, 115449 (2011).

35.
Peng, Q., Han, L., Lian, J., Wen, X., Liu, S., Chen, Z., Koratkar, N., and De, S.: Mechanical degradation of graphene by epoxidation: Insights from first-principles calculations. Phys. Chem. Chem. Phys.
17, 19484 (2015).

36.
Kudin, K.N., Scuseria, G.E., and Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B
64, 235406 (2001).

37.
Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater.
10, 823 (2011).

38.
Kalosakas, G., Lathiotakis, N.N., Galiotis, C., and Papagelis, K.: In-plane force fields and elastic properties of graphene. J. Appl. Phys.
113, 134307 (2013).

39.
Cadelano, E., Palla, P.L., Giordano, S., and Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett.
102, 235502 (2009).

40.
Zhou, J. and Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids
56, 1609 (2008).

41.
Zakharchenko, K.V., Katsnelson, M.I., and Fasolino, A.: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett.
102, 046808 (2009).

42.
Wei, Q. and Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett.
104, 251915 (2014).

43.
Jasiuk, I., Chen, J., and Thorpe, M.F.: Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev.
47, S18 (1994).