Skip to main content Accessibility help
×
Home

Compressive strengths of PEG gels with glycerol and bioglass particles

  • Ariel Golshan (a1), Jenesis A. Curtis (a2), Vasilios Lianos (a2), Sina Y. Rabbany (a3) and Roche C. de Guzman (a3)...

Abstract

Poly(ethylene glycol) (PEG)-based materials can potentially be used as biomechanical matrices in regenerative medicine and tissue engineering implants including the replacement of intervertebral (IV) disks. Glycerol and other generally recognized as safe (GRAS) plasticizers (low-MW PEG, propylene glycol, and sorbitol) were added to the bulk PEG matrix and gelled using chemical and photochemical methods at different temperatures (21, 37, 59, and 80 °C) and pressures (0 and 90 MPa gauge) settings, and their compression testing properties were acquired and analyzed. Surface incorporation of custom-made bioactive glass particles shortened the blood clotting time (78% compared to no glass particles), while alginate and laponite additives improved the gel’s mechanical properties to 645 kPa compressive modulus, 12% yield strain, and 79 kPa yield strength. This IV disk-modeled hydrogel system endured the cyclic loading and unloading tests at 4% compressive strain indicative of an elastic response, but required improvement to its biomechanical tolerance for downstream bioengineering applications.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: roche.c.deguzman@hofstra.edu

References

Hide All
1.Hahn, M.S., Miller, J.S., and West, J.L.: Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679 (2006).
2.Patel, P.N., Smith, C.K., and Patrick, C.W.: Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J. Biomed. Mater. Res., Part A 73, 313 (2005).
3.Arcaute, K., Mann, B.K., and Wicker, R.B.: Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34, 1429 (2006).
4.Cruise, G.M., Scharp, D.S., and Hubbell, J.A.: Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19, 1287 (1998).
5.Halstenberg, S., Panitch, A., Rizzi, S., Hall, H., and Hubbell, J.A.: Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710 (2002).
6.Varghese, S., van der Schaft, D., and van Spreeuwel, A.: Improving the properties of PEGDA hydrogels by adding clay particles, without reducing the biocompatibility. Biomech. Tissue Eng. 9, 36 (2009).
7.Iatridis, J.C., Nicoll, S.B., Michalek, A.J., Walter, B.A., and Gupta, M.S.: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13, 243 (2013).
8.Schutgens, E.M., Tryfonidou, M.A., Smit, T.H., Oner, F.C., Krouwels, A., Ito, K., and Creemers, L.B.: Biomaterials for intervertebral disc regeneration: Past performance and possible future strategies. Eur. Cells Mater. 30, 210 (2015).
9.Khandaker, M., Orock, A., Tarantini, S., White, J., and Yasar, O.: Biomechanical performances of networked polyethylene glycol diacrylate (PEGDA): Effect of photo initiator concentration, temperature, and incubation time. Int. J. Biomater. 2016, 3208312 (2016).
10.Sejidov, F.T., Mansoori, Y., and Goodarzi, N.: Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. J. Mol. Catal. A: Chem. 240, 186 (2005).
11.Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., and Beppu, M.M.: Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 47, 254 (2011).
12.López-Castejón, M.L., Bengoechea, C., García-Morales, M., and Martínez, I.: Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod. Process. 95, 264 (2015).
13.Vesterinen, E., Suortti, T., and Autio, K.: Effects of preparation temperature on gelation properties and molecular structure of high-amylose maize starch. Cereal Chem. 78, 442 (2001).
14.Kim, B.: Effects of pH/temperature on the swelling behavior and rheological properties of hydrogel. In Chemical Engineering (University of Southern California, Los Angeles, California, 2010); p. 191.
15.Elliott, J.E., Macdonald, M., Nie, J., and Bowman, C.N.: Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45, 1503 (2004).
16.Jones, D.S., Andrews, G.P., and Gorman, S.P.: Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J. Pharm. Pharmacol. 57, 1251 (2005).
17.Annabi, N., Mithieux, S.M., Weiss, A.S., and Dehghani, F.: The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30, 1 (2009).
18.Bron, J.L., Vonk, L.A., Smit, T.H., and Koenderink, G.H.: Engineering alginate for intervertebral disc repair. J. Mech. Behav. Biomed. Mater. 4, 1196 (2011).
19.Pawar, S.N. and Edgar, K.J.: Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33, 3279 (2012).
20.Tomas, H., Alves, C.S., and Rodrigues, J.: Laponite®: A key nanoplatform for biomedical applications? Nanomedicine 14, 24072420 (2017).
21.Hong, S., Sycks, D., Chan, H.F., Lin, S., Lopez, G.P., Guilak, F., Leong, K.W., and Zhao, X.: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035 (2015).
22.Baino, F., Hamzehlou, S., and Kargozar, S.: Bioactive glasses: Where are we and where are we going? J. Funct. Biomater. 9 126 (2018).
23.Golshan, A., Curtis, J.A., Lianos, V., Rabbany, S.Y., and de Guzman, R.C.: Compressive Strengths of PEG Gels with Glycerol and Bioglass Particles (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2018); p. 405779.
24.Zhang, Y., Rempel, C., and Liu, Q.: Thermoplastic starch processing and characteristics—A review. Crit. Rev. Food Sci. Nutr. 54, 1353 (2014).
25.Lerbret, A., Mason, P.E., Venable, R.M., Cesaro, A., Saboungi, M.L., Pastor, R.W., and Brady, J.W.: Molecular dynamics studies of the conformation of sorbitol. Carbohydr. Res. 344, 2229 (2009).
26.Kaewprachu, P., Osako, K., and Rawdkuen, S.: Effects of plasticizers on the properties of fish myofibrillar protein film. J. Food Sci. Technol. 55, 3046 (2018).
27.Wagh, Y.R., Pushpadass, H.A., Emerald, F.M., and Nath, B.S.: Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. J. Food Sci. Technol. 51, 3767 (2014).
28.Dutta, S. and Dhara, D.: Effect of preparation temperature on salt-induced deswelling and pattern formation in poly(N-isopropylacrylamide) hydrogels. Polymer 76, 62 (2015).
29.Ciepluch, K., Radulescu, A., Hoffmann, I., Raba, A., Allgaier, J., Richter, D., and Biehl, R.: Influence of PEGylation on domain dynamics of phosphoglycerate kinase: PEG acts like entropic spring for the protein. Bioconjugate Chem. 29, 1950 (2018).
30.Golovchak, R., Thapar, P., Ingram, A., Savytskii, D., and Jain, H.: Influence of phase separation on the devitrification of 45S5 bioglass. Acta Biomater. 10, 4878 (2014).
31.Kowal, T.J., Golovchak, R., Chokshi, T., Harms, J., Thamma, U., Jain, H., and Falk, M.M.: Role of phase separation on the biological performance of 45S5 Bioglass®. J. Mater. Sci.: Mater. Med. 28, 161 (2017).
32.Ostomel, T.A., Shi, Q., and Stucky, G.D.: Oxide hemostatic activity. J. Am. Chem. Soc. 128, 8384 (2006).
33.Pourshahrestani, S., Kadri, N.A., Zeimaran, E., Gargiulo, N., Samuel, S., Naveen, S.V., Hasikin, K., Kamarul, T., and Towler, M.R.: Comparative efficacy of hemorrhage control of a novel mesoporous bioactive glass versus two commercial hemostats. Biomed. Mater. 13, 025020 (2018).
34.Tulyaganov, D., Abdukayumov, K., Ruzimuradov, O., Hojamberdiev, M., Ionescu, E., and Riedel, R.: Effect of alumina incorporation on the surface mineralization and degradation of a bioactive glass (CaO–MgO–SiO2–Na2O–P2O5–CaF2)-glycerol paste. Materials 10, 115 (2017).
35.Wilke, H.J., Neef, P., Caimi, M., Hoogland, T., and Claes, L.E.: New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24, 755 (1999).
36.Schmidt, H., Shirazi-Adl, A., Schilling, C., and Dreischarf, M.: Preload substantially influences the intervertebral disc stiffness in loading–unloading cycles of compression. J. Biomech. 49, 1926 (2016).
37.Li, S., Patwardhan, A.G., Amirouche, F.M., Havey, R., and Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J. Biomech. 28, 779 (1995).
38.Salari-Sharif, L., Schaedler, T.A., and Valdevit, L.: Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 29, 1755 (2014).
39.Zhu, Y., Kang, G., Yu, C., and Poh, L.H.: Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues. J. Mech. Behav. Biomed. Mater. 61, 397 (2016).
40.Perrini, M., Mauri, A., Ehret, A.E., Ochsenbein-Kolble, N., Zimmermann, R., Ehrbar, M., and Mazza, E.: Mechanical and microstructural investigation of the cyclic behavior of human amnion. J. Biomech. Eng. 137, 061010 (2015).
41.de Guzman, R.C. and Rabbany, S.Y.: PEG-immobilized keratin for protein drug sequestration and pH-mediated delivery. J. Drug Delivery 2016, 1 (2016).
42.Sheen, B. and de Guzman, R.C.: Electroresponsive PEG-chitosan matrix for anion release. Biomater. Tissue Technol. 1, 1 (2017).
43.Greenspan, D.C. and Hench, L.L.: Chemical and mechanical behavior of bioglass-coated alumina. J. Biomed. Mater. Res. 10, 503 (1976).
44.Lin, K., Chang, J., Liu, Z., Zeng, Y., and Shen, R.: Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J. Eur. Ceram. Soc. 29, 2937 (2009).

Keywords

Compressive strengths of PEG gels with glycerol and bioglass particles

  • Ariel Golshan (a1), Jenesis A. Curtis (a2), Vasilios Lianos (a2), Sina Y. Rabbany (a3) and Roche C. de Guzman (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed