Skip to main content Accessibility help

Compound growth and microstructure of carbon nanotube

  • Zaoli Zhang (a1), Lian Ouyang (a2), Zujin Shi (a2) and Zhennan Gu (a2)


The compound growth of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT), which formed a nanotube cable, was achieved by the chemical vapor deposition of natural gas on an Fe catalyst supported on SiO2–Al2O3 hybrid materials at 950 °C. The microstructure of nanotubes was characterized by high-resolution transmission electron microscopy (HRTEM). The SWCNTs encapsulated inside MWCNTs can be two, three, or even more in quantity with a diameter range from 1.0 nm to 2.0 nm. The diameter of SWCNT is controlled by the size of the catalyst nanoparticles. Some bundles of SWCNT and double-walled nanotubes were also found. The possible mechanism of compound growth is briefly discussed.


Corresponding author

a)Address all correspondence to this author. Present address: Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany. e-mail:


Hide All
1.Iijima, S., Nature 354, 56 (1991).
2.Bethune, D.S., Kiang, C.H., DeVries, M., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).
3.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de, M.L. la Chapelle, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature 388, 756 (1997).
4.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).
5.Fan, S.S., Chapline, M., Franlin, N., Tombler, T., Cassell, A.M., and Dai, H.J., Science 283, 512 (1999).
6.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).
7.Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., and Qian, L.X., Nature 394, 631 (1998).
8.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., and Siegal, M.P., Science 282, 1105 (1998).
9.Kong, J., Cassell, A.M., and Dai, H.J., Chem. Phys. Lett. 292, 567 (1998).
10.Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., Appl. Phys. Lett. 72, 3282 (1998).
11.Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett. 296, 195 (1998).
12.Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., and Rao, C.N., Chem. Phys. Lett. 300, 236 (1999).
13.Peigney, A., Laurent, Ch., Dobigeon, F., and Rousset, A., J. Mater. Res. 12, 613 (1997).
14.Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H.J., J. Phys. Chem. B 103, 6484 (1999).
15.Zhu, H.W., Xu, C.L., Wu, D.H., Wu, B.Q., Vajtai, R., and Ajayan, P.M., Science 296, 884 (2002).
16.Tibbetts, G.G., Appl. Phys. Lett. 42, 666 (1983).
17.Baker, R.T.K. and Harris, P.S., Formation of Filamentous Carbon in Chemistry and Physics of Carbon 14 (Marcel Dekker, New York, 1978), p. 83.
18.Baker, R.T.K., Carbon 27, 315 (1989).
19.Dai, H.J., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 260, 471 (1996).
20.Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., and Derbyshire, F., Chem. Phys. Lett. 315, 25 (1999).
21.Whitby, R.L.D., Hsu, W.K., Watts, P.C.P., Kroto, H.W., Walton, D.R.M., and Boothroyd, C.B., Appl. Phys. Lett. 79, 4574 (2001).

Related content

Powered by UNSILO

Compound growth and microstructure of carbon nanotube

  • Zaoli Zhang (a1), Lian Ouyang (a2), Zujin Shi (a2) and Zhennan Gu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.