Skip to main content Accessibility help

Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo2 Laves phase polytypes studied by nanoindentation

  • Wei Luo (a1), Christoph Kirchlechner (a1), Juan Li (a1), Gerhard Dehm (a1) and Frank Stein (a1)...


Regarding the effect of composition on the mechanical properties of intermetallic phases such as Laves phases, there is conflicting information in the literature. Some authors observed defect hardening when deviating from stoichiometric Laves phase composition, whereas others find defect softening. Here, we present a systematic investigation of the defect state, hardness, and elastic modulus of cubic and hexagonal NbCo2 Laves phases as a function of crystal structure and composition. For this purpose, diffusion couples were prepared which exhibit diffusion layers of the cubic C15 and hexagonal C14 and C36 NbCo2 Laves phases, with concentration gradients covering their entire homogeneity ranges from 24 to 37 at.% Nb. Direct observations of dislocations and stacking faults in the diffusion layers as a function of composition were performed by electron channeling contrast imaging, and the hardness and elastic modulus were probed in the diffusion layers along the concentration gradients by nanoindentation.


Corresponding author

a)Address all correspondence to these authors. e-mail:,


Hide All
1.Livingston, J.D.: Laves-phase superalloys? Phys. Status Solidi A 131, 415 (1992).
2.Stein, F., Jiang, D., Palm, M., Sauthoff, G., Grüner, D., and Kreiner, G.: Experimental reinvestigation of the Co–Nb phase diagram. Intermetallics 16, 785 (2008).
3.Liu, C.T., Zhu, J.H., Brady, M.P., Mckamey, G.G., and Pike, L.M.: Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics 8, 1119 (2000).
4.Zhu, J.H., Pike, L.M., Liu, C.T., and Liaw, P.K.: Point defects in binary Laves phase alloys. Acta Mater. 47, 2003 (1999).
5.Voß, S., Stein, F., Palm, M., Grüner, D., Kreiner, G., Frommeyer, G., and Raabe, D.: Composition dependence of the hardness of Laves phases in the Fe–Nb and Co–Nb systems. Mater. Res. Soc. Symp. Proc. 1128, 469 (2008).
6.Voß, S., Stein, F., Palm, M., and Raabe, D.: Synthesis of defect-free single-phase bars of high-melting Laves phases through modified cold crucible levitation melting. Mater. Sci. Eng., A 527, 7848 (2010).
7.Voß, S.: Crystal structure and composition of the Fe–Nb(–Al) and Co–Nb systems. Doctoral thesis, RWTH Aachen University, Shaker Verlag, Aachen, Germany, 2010.
8.Chen, K.C., Chu, F., Kotula, P.G., and Thoma, D.: HfCo2 laves phase intermetallics—Part II: Elastic and mechanical properties as a function of composition. Intermetallics 9, 785 (2001).
9.Zhao, J-C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16, 1565 (2001).
10.Zaefferer, S. and Elhami, N-N.: Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20 (2014).
11.Kazantzis, A.V., Aindow, M., Jones, I.P., Triantafyllidis, G.K., and De Hosson, J.T.M.: The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures. Acta Mater. 55, 1873 (2007).
12.Kubsch, H., Paufler, P., and Schulze, G.E.R.: On the comparison between grown-in and fresh dislocations in the intermetallic compound MgZn2. Phys. Status Solidi A 24, K53 (1974).
13.Takata, N., Ghassemi-Armaki, H., Takeyama, M., and Kumar, S.: Nanoindentation study on solid solution softening of Fe-rich Fe2Nb Laves phase by Ni in Fe–Nb–Ni ternary alloys. Intermetallics 70, 7 (2016).
14.Luzzi, D.E., Rao, G., Dobbins, T.A., and Pope, D.P.: Deformation twinning at low temperatures in a Hf–V–Nb cubic laves phase. Acta Mater. 46, 2913 (1998).
15.Hazzledine, P.M., Kumar, K.S., Miracle, D.B., and Jackson, A.G.: Synchroshear of laves phases. Mater. Res. Soc. Symp. Proc. 288, 591 (1992).
16.Ma, L., Fan, T-W., Tang, B-Y., Peng, L-M., and Ding, W-j.: Ab initio study of I2 and T2 stacking faults in C14 Laves phase MgZn2. Eur. Phys. J. B 86, 188 (2013).
17.Chu, F., Ormeci, A.H., Mitchell, T.E., Wills, J.M., Thoma, D.J., Albers, R.C., and Chen, S.P.: Stacking fault energy of the NbCr2 Laves phase. Philos. Mag. Lett. 72, 147 (1995).
18.Sun, J. and Jiang, B.: Ab initio calculation of the phase stability, mechanical properties and electronic structure of ZrCr2 Laves phase compounds. Philos. Mag. 84, 3133 (2004).
19.He, C., Stein, F., and Palm, M.: Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb. J. Alloys Compd. 637, 361 (2015).
20.Grüner, D., Stein, F., Palm, M., Konrad, J., Ormeci, A., Schnelle, W., Grin, Y., and Kreiner, G.: Preparation, phase stability and structure of the C36 Laves phase Nb1−xCo2+x. Z. Kristallogr. 221, 319 (2006).
21.Chen, S., Sun, Y., Duan, Y-H., Huang, B., and Peng, M-J.: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. J. Alloys Compd. 630, 202 (2015).
22.Müller, T. and Paufler, P.: Yield strength of the monocrystalline intermetallic compound MgZn2. Phys. Status Solidi A 40, 471 (1977).
23.Paufler, P.: Early work on laves phases in East Germany. Intermetallics 19, 599 (2011).
24.Takasugi, T., Yoshida, M., and Hanada, S.: Deformability improvement in C15 NbCr2 intermetallics by addition of ternary elements. Acta Mater. 44, 669 (1996).
25.Nakagawa, Y., Ohta, T., Kaneno, Y., Inoue, H., and Takasugi, T.: Defect structures and room-temperature mechanical properties of C15 Laves phases in Zr–Nb–Cr and Zr–Hf–Cr alloy systems. Metall. Mater. Trans. A 35, 3469 (2004).
26.Kazantzis, A.V., Aindow, M., Triantafyllidis, G.K., and De Hosson, J.T.M.: On the self-pinning character of synchro-Shockley dislocations in a Laves phase during strain rate cyclical compressions. Scr. Mater. 59, 788 (2008).
27.Hazzledine, P.M. and Pirouz, P.: Synchroshear transformation in Laves phases. Scr. Metall. Mater. 28, 1277 (1993).
28.Qiu, X., Huang, Y., Nix, W.D., Hwang, K.C., and Gao, H.: Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater. 49, 3949 (2001).
29.Durst, K., Backes, B., Franke, O., and Göken, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).
30.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
31.Liu, L., Shen, P., Wu, X., Wang, R., Li, W., and Liu, Q.: First-principles calculations on the stacking fault energy, surface energy and dislocation properties of NbCr2 and HfCr2. Comput. Mater. Sci. 140, 334 (2017).
32.Wang, J.N.: A new modification of the formulation of Peierls stress. Acta Mater. 44, 1541 (1996).
33.Wang, J.N.: Prediction of Peierls stresses for different crystals. Mater. Sci. Eng., A 206, 259 (1996).
34.Luo, W., Kirchlechner, C., Fang, X., Brinckmann, S., Dehm, G., and Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Mater. Des. 145, 116 (2018).
35.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).


Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo2 Laves phase polytypes studied by nanoindentation

  • Wei Luo (a1), Christoph Kirchlechner (a1), Juan Li (a1), Gerhard Dehm (a1) and Frank Stein (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed