Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T04:02:34.387Z Has data issue: false hasContentIssue false

Composite ceramics with a positive temperature coefficient of electrical resistivity effect

Published online by Cambridge University Press:  31 January 2011

Darja Lisjak
Affiliation:
Institute “Jožef Stefan,” Jamova 39, 1000 Ljubljana, Slovenia
Miha Drofenik
Affiliation:
Institute “Jožef Stefan,” Jamova 39, 1000 Ljubljana, Slovenia
Drago Kolar
Affiliation:
Institute “Jožef Stefan,” Jamova 39, 1000 Ljubljana, Slovenia
Get access

Abstract

Composite ceramics with compositions within the ZnO–NiO–TiO2, ZnO–MgO, and ZnO–Ln2O3 (Ln = Nd, Sm) systems were found to exhibit an anomalous positive temperature coefficient of electrical resistivity (PTCR) effect. The investigations revealed, that in all cases when the PTCR effect was identified, the composite ceramics were found to be composed of phases with different electrical resistivities and linear thermal expansion coefficients. Thermal mismatch between the phases in the composites leads to a disconnection of the grains of the low resistivity constituent phase on account of the high thermal expansion of the other high resistivity constituent phase, resulting in a PTCR effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Daniels, J., Härdtl, K.H., and Wernicke, R., Philips Technical Review 38, 73 (1978/1979).Google Scholar
2.Doljack, F.A., IEEE Transactions on Components, Hybrids, and Manufacturing Technology CHMT–4, 372 (1981).CrossRefGoogle Scholar
3.Mather, P.J. and Thomas, K.M., J. Mater. Sci. 32, 401 (1997).CrossRefGoogle Scholar
4.Bhattcharya, S.K., Basu, S., and De, S.K., J. Appl. Polym. Sci. 25, 111 (1980).CrossRefGoogle Scholar
5.Nicodemo, L., Nicolais, L., Romeo, G., and Scafora, E., Polym. Eng. Sci. 18, 293 (1978).CrossRefGoogle Scholar
6.Yoon, K.H. and Nam, Y.W., J. Mater. Sci. 27, 4051 (1992).CrossRefGoogle Scholar
7.Shrout, T.R., Maffatt, D., and Huebner, W., J. Mater. Sci. 26, 145 (1991).CrossRefGoogle Scholar
8.Wei-Fang, D., Xu, T., and Hai-Qing, D., J. Mater. Sci. 29, 1097 (1994).CrossRefGoogle Scholar
9.Ota, T. and Yamai, I., J. Am. Ceram. Soc. 75, 1772 (1992).CrossRefGoogle Scholar
10.Ota, T., Nashimoto, Y., Kimata, H., Ozoe, S., Unuma, H., Takashi, M., Hikichi, Y., and Suzuki, H., J. Mater. Sci. Lett. 16, 239 (1997).CrossRefGoogle Scholar
11.Miyayamo, M., Teranishi, J., and Yanagida, H., J. Mater. Sci. 28, 6442 (1993).CrossRefGoogle Scholar
12.Amin, A. and Newnham, R.E., Key Eng. Mater. 66&67, 339 (1992).CrossRefGoogle Scholar
13.Kuwamoto, H., Honig, J.M., and Appel, J., Phys. Rev. B, Condens. Matter 22, 2626 (1980).CrossRefGoogle Scholar
14.Kirkpatrick, K.S., Balachandran, U., and Poeppel, R.B., in Abstracts of the 93rd American Ceramics Society Annual Meeting, April 29–May 2, 1991, Cincinnati, Ohio (The American Ceramic Society, Westerville, OH), No. 83-E-91.Google Scholar
15.Zajc, I. and Drofenik, M., Mater. Res. Bull. 32, 547 (1997).CrossRefGoogle Scholar
16.Lisjak, D., Zajc, I., Drofenik, M., and Jamnik, J., Solid State Ionics 99, 125 (1997).CrossRefGoogle Scholar
17.Drofenik, M., Lisjak, D., and Zajc, I., J. Am. Ceram. Soc. 80, 1471 (1997).CrossRefGoogle Scholar
18.Sinn, D.S., Solid State Ionics 83, 333 (1996).CrossRefGoogle Scholar
19.Moses, A.J., The Practicing Scientist's Handbook—A Guide for Physical and Terrestrial Scientists and Engineers (Van Nostrand Reinhold, New York, 1978), pp. 885, 987, 992.Google Scholar
20.Segnit, E.R. and Holland, A.E., J. Am. Ceram. Soc. 48, 409 (1965).CrossRefGoogle Scholar
21.Sarver, J.F., Katrack, F.L., and Hummel, F.A., J. Electrochem. Soc. 106, 960 (1995).CrossRefGoogle Scholar
22.Rigamonti, R., Gazz. Chim. Ital. 76, 474 (1948).Google Scholar
23.Godzhieva, O.V., Porotnikov, N.V., and Petrov, K.I., Russ. J. Inorg. Chem. (Engl. Trans.) 32, 1676 (1987) [translated from Zh. Neorg. Khim. 32, 2884 (1987)].Google Scholar
24.Godzhieva, O.V., Porotnikov, N.V., and Korobkina, N.A., Russ. J. Inorg. Chem. (Engl. Trans.) 32, 1677 (1987) [translated from Zh. Neorg. Khim. 32, 2887 (1987)].Google Scholar
25.Draxič, G. and Lisjak, D. (unpublished).Google Scholar
26.Navrotsky, A. and Muan, A., J. Inorg. Nucl. Chem. 33, 35 (1971).CrossRefGoogle Scholar
27.Navrotsky, A. and Muan, A., J. Inorg. Nucl. Chem. 32, 3471 (1970).CrossRefGoogle Scholar
28.Lisjak, D., Zajc, I., and Drofenik, M., J. Mater Sci. Lett. 16, 304 (1997).CrossRefGoogle Scholar
29.Lisjak, D., Drofenik, M., Dražič, G., and Kolar, D., J. Mater. Sci. 33, 4201 (1998).CrossRefGoogle Scholar
30.O'Bryan, H.M. Jr, van Uitert, L.G., Kolb, E.D., and Zydzik, G., J. Am. Ceram. Soc. 61, 269 (1978).CrossRefGoogle Scholar
31.American Institute of Physics Handbook, edited by Gray, D.E. (McGraw-Hill, New York, 1972), pp. 4138.Google Scholar