Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T16:59:42.634Z Has data issue: false hasContentIssue false

Complex oxide nanomembranes for energy conversion and storage: A review

Published online by Cambridge University Press:  07 November 2013

Kian Kerman*
Affiliation:
Materials Science Group in Applied Physics, Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
Shriram Ramanathan
Affiliation:
Materials Science Group in Applied Physics, Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: kkerman@fas.harvard.edu
Get access

Abstract

Oxide membranes are the foundation of several electrochemical devices and sensors, where functionality is related to selective transport of electrons and ions through a membrane or physical responses from an external perturbation. The ability to engineer power sources and sensors for the rapidly growing field of autonomous systems requires high power density and specific energy. Clamped free-standing nanoscale membranes provide an experimentally tunable platform to explore the limits of dimensionality reduction for such purposes. This review addresses the following: (i) advancing experimental methods to fabricate nanoscale oxide membranes that can sustain a chemical potential gradient, thermomechanically stable under large thermal cycles, and can be electrically interrogated with negligible parasitic loss; (ii) a representative example of high performance energy devices, solid oxide fuel cells, utilizing such membranes; and (iii) a brief discussion on emerging research directions broadly in the areas of condensed matter sciences and energy conversion and storage intersecting low-dimensional complex oxide materials.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elmi, I., Zampolli, S., Cozzani, E., Mancarella, F., and Cardinali, G.C.: Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens. Actuators, B 135(1), 342 (2008).CrossRefGoogle Scholar
Nguyen, M.D., Vu, H.N., Blank, D.H.A., and Rijnders, G.: Epitaxial Pb(Zr, Ti)O3 thin films for a MEMS application. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015005 (2011).Google Scholar
Kossoy, A., Frenkel, A.I., Feldman, Y., Wachtel, E., Milner, A., and Lubomirsky, I.: The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2−x . Solid State Ionics 181(33–34), 1473 (2010).CrossRefGoogle Scholar
Ko, C., Kerman, K., and Ramanathan, S.: Ultra-thin film solid oxide fuel cells utilizing un-doped nanostructured zirconia electrolytes. J. Power Sources 213(0), 343 (2012).Google Scholar
Garbayo, I., Tarancón, A., Santiso, J., Peiró, F., Alarcón-Lladó, E., Cavallaro, A., Gràcia, I., Cané, C., and Sabaté, N.: Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ionics 181(5–7), 322 (2010).CrossRefGoogle Scholar
Rey-Mermet, S. and Muralt, P.: Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics 179(27–32), 1497 (2008).CrossRefGoogle Scholar
Greenberg, M., Wachtel, E., Lubomirsky, I., Fleig, J., and Maier, J.: Elasticity of solids with a large concentration of point defects. Adv. Funct. Mater. 16(1), 48 (2006).Google Scholar
Shim, J.H., Park, J.S., An, J., Gür, T.M., Kang, S., and Prinz, F.B.: Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem. Mater. 21(14), 3290 (2009).CrossRefGoogle Scholar
He, J., Kanjanaboos, P., Frazer, N.L., Weis, A., Lin, X-M., and Jaeger, H.M.: Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6(13), 1449 (2010).Google Scholar
Dong, A., Chen, J., Vora, P.M., Kikkawa, J.M., and Murray, C.B.: Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305), 474 (2010).CrossRefGoogle ScholarPubMed
Sim, J.S., Zhou, Y., and Ramanathan, S.: Suspended sub-50 nm vanadium dioxide membrane transistors: Fabrication and ionic liquid gating studies. Nanoscale 4(22), 7056 (2012).Google Scholar
Tsuchiya, M., Lai, B-K., Johnson, A.C., and Ramanathan, S.: Photon-assisted synthesis of ultra-thin yttria-doped zirconia membranes: Structure, variable temperature conductivity and micro-fuel cell devices. J. Power Sources 195(4), 994 (2010).CrossRefGoogle Scholar
De Souza, R.A.: The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3 . Phys. Chem. Chem. Phys. 11(43), 9939 (2009).CrossRefGoogle ScholarPubMed
Maier, J.: Defect chemistry and ionic conductivity in thin films. Solid State Ionics 23(1–2), 59 (1987).Google Scholar
Tuller, H.L.: Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2), 143 (2000).CrossRefGoogle Scholar
Sze, S.M. and Ng, K.K.: Physics of Semiconductor Devices (John Wiley & Sons, Hoboken, NJ, 2006).Google Scholar
Tuller, H.L., Litzelman, S.J., and Jung, W.: Micro-ionics: Next generation power sources. Phys. Chem. Chem. Phys. 11(17), 3023 (2009).Google Scholar
Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., and Lowndes, D.H.: Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176(13–14), 1319 (2005).CrossRefGoogle Scholar
Li, B., Zhang, J., Kaspar, T., Shutthanandan, V., Ewing, R.C., and Lian, J.: Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Phys. Chem. Chem. Phys. 15(4), 1296 (2013).CrossRefGoogle ScholarPubMed
Karthikeyan, A., Chang, C-L., and Ramanathan, S.: High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl. Phys. Lett. 89(18), 183116 (2006).CrossRefGoogle Scholar
Sillassen, M., Eklund, P., Pryds, N., Johnson, E., Helmersson, U., and Bøttiger, J.: Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20(13), 2071 (2010).Google Scholar
Gerstl, M., Friedbacher, G., Kubel, F., Hutter, H., and Fleig, J.: The relevance of interfaces for oxide ion transport in yttria stabilized zirconia (YSZ) thin films. Phys. Chem. Chem. Phys. 15(4), 1097 (2013).CrossRefGoogle ScholarPubMed
Guo, X.: Can we achieve significantly higher ionic conductivity in nanostructured zirconia? Scr. Mater. 65(2), 96 (2011).CrossRefGoogle Scholar
Kim, H-R., Kim, J-C., Lee, K-R., Ji, H-I., Lee, H-W., Lee, J-H., and Son, J-W.: ‘Illusional’ nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films. Phys. Chem. Chem. Phys. 13(13), 6133 (2011).Google Scholar
Navickas, E., Gerstl, M., Friedbacher, G., Kubel, F., and Fleig, J.: Measurement of the across-plane conductivity of YSZ thin films on silicon. Solid State Ionics 211(0), 58 (2012).CrossRefGoogle ScholarPubMed
Kim, S. and Maier, J.: On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc. 149(10), J73 (2002).CrossRefGoogle Scholar
Guo, X. and Ding, Y.: Grain boundary space charge effect in zirconia: Experimental evidence. J. Electrochem. Soc. 151(1), J1 (2004).CrossRefGoogle Scholar
Tschöpe, A.: Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 139(3–4), 267 (2001).Google Scholar
Durá, O.J., López de la Torre, M.A., Vázquez, L., Chaboy, J., Boada, R., and Rivera-Calzada, A., Santamaria, J., and Leon, C.: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys. Rev. B 81(18), 184301 (2010).Google Scholar
Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U.: Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ionics 136137(0), 1225 (2000).Google Scholar
Huang, H., Gur, T.M., Saito, Y., and Prinz, F.: High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films. Appl. Phys. Lett. 89(14), 143107 (2006).Google Scholar
Karthikeyan, A., Tsuchiya, M., Chang, C-L., and Ramanathan, S.: Tunable electrical conductivity in nanoscale Gd-doped ceria thin films. Appl. Phys. Lett. 90(26), 263108 (2007).CrossRefGoogle Scholar
Sankaranarayanan, S.K.R.S. and Ramanathan, S.: Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: An atomistic simulation study. J. Chem. Phys. 134(6), 064703 (2011).Google Scholar
Jung, W., Hertz, J.L., and Tuller, H.L.: Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ). Acta Mater. 57(5), 1399 (2009).CrossRefGoogle Scholar
Singhal, S.C. and Kendall, K.: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications: Fundamentals, Design and Applications (Elsevier Inc., New York, 2003).Google Scholar
O'Hayre, R.P., Cha, S-W, Colella, W., and Prinz, F.B.: Fuel Cell Fundamentals (John Wiley & Sons, Hoboken, NJ, 2006).Google Scholar
Kushima, A. and Yildiz, B.: Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain? J. Mater. Chem. 20(23), 4809 (2010).CrossRefGoogle Scholar
Rushton, M.J.D., Chroneos, A., Skinner, S.J., Kilner, J.A., and Grimes, R.W.: Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230(0), 37 (2013).Google Scholar
Jiang, J., Hu, X., Shen, W., Ni, C., and Hertz, J.L.: Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl. Phys. Lett. 102(14), 143901 (2013).Google Scholar
Rupp, J.L.M.: Ionic diffusion as a matter of lattice-strain for electroceramic thin films. Solid State Ionics 207(0), 1 (2012).CrossRefGoogle Scholar
Rupp, J.L.M., Scherrer, B., Harvey, A.S., and Gauckler, L.J.: Crystallization and grain growth kinetics for precipitation-based ceramics: A case study on amorphous ceria thin films from spray pyrolysis. Adv. Funct. Mater. 19(17), 2790 (2009).Google Scholar
Scherrer, B., Heiroth, S., Hafner, R., Martynczuk, J., Bieberle-Hütter, A., Rupp, J.L.M., and Gauckler, L.J.: Crystallization and microstructure of yttria-stabilized-zirconia thin films deposited by spray pyrolysis. Adv. Funct. Mater. 21(20), 3967 (2011).Google Scholar
Lvov, Y., Essler, F., and Decher, G.: Combination of polycation/polyanion self-assembly and Langmuir-Blodgett transfer for the construction of superlattice films. J. Phys. Chem. 97(51), 13773 (1993).Google Scholar
Roberts, G.G.: An applied science perspective of Langmuir-Blodgett films. Adv. Phys. 34(4), 475 (1985).Google Scholar
Cote, L.J., Kim, F., and Huang, J.: Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043 (2008).CrossRefGoogle Scholar
Eda, G., Fanchini, G., and Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270 (2008).Google Scholar
Cheng, W., Campolongo, M.J., Tan, S.J., and Luo, D.: Freestanding ultrathin nano-membranes via self-assembly. Nano Today 4(6), 482 (2009).Google Scholar
Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L.J.: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131(1–2), 79 (2000).CrossRefGoogle Scholar
Pederson, L.R., Singh, P., and Zhou, X.D.: Application of vacuum deposition methods to solid oxide fuel cells. Vacuum 80(10), 1066 (2006).Google Scholar
Kerman, K., Lai, B-K., and Ramanathan, S.: Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells. J. Power Sources 202(0), 120 (2012).CrossRefGoogle Scholar
Williams, K.R. and Muller, R.S.: Etch rates for micromachining processing. J. Microelectromech. Syst. 5(4), 256 (1996).Google Scholar
Williams, K.R., Gupta, K., and Wasilik, M.: Etch rates for micromachining processing: Part II. J. Microelectromech. Syst. 12(6), 761 (2003).Google Scholar
Liu, C., Mungurwadi, V.B., and Nandi, A.V.: Foundations of MEMS (Prentice Hall, Saddle River, NJ, 2011).Google Scholar
Korvink, J. and Paul, O.: MEMS: A Practical Guide to Design, Analysis and Applications (William Andrew Inc., Norwich, NY, 2005).Google Scholar
Evans, A., Bieberle-Hütter, A., Rupp, J.L.M., and Gauckler, L.J.: Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194(1), 119 (2009).Google Scholar
Baertsch, C.D., Jensen, K.F., Hertz, J.L., Tuller, H.L., Vengallatore, S.T., Spearing, S.M., and Schmidt, M.A.: Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J. Mater. Res. 19(9), 2604 (2004).CrossRefGoogle Scholar
Johnson, A.C., Lai, B-K., Xiong, H., and Ramanathan, S.: An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films. J. Power Sources 186(2), 252 (2009).Google Scholar
Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F.B.: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154(1), B20 (2007).Google Scholar
Litzelman, S.J., Hertz, J.L., Jung, W., and Tuller, H.L.: Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8, 294 (2008).Google Scholar
Tsuchiya, M., Lai, B-K., and Ramanathan, S.: Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol. 6(5), 282 (2011).CrossRefGoogle ScholarPubMed
Seidel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H.: Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612 (1990).CrossRefGoogle Scholar
Rupp, J.L.M., Muecke, U.P., Nalam, P.C., and Gauckler, L.J.: Wet-etching of precipitation-based thin film microstructures for micro-solid oxide fuel cells. J. Power Sources 195(9), 2669 (2010).Google Scholar
Bieberle-Hütter, A., Reinhard, P., Rupp, J.L.M., and Gauckler, L.J.: The impact of etching during microfabrication on the microstructure and the electrical conductivity of gadolinia-doped ceria thin films. J. Power Sources 196(15), 6070 (2011).Google Scholar
Su, P-C., Chao, C-C., Shim, J.H., Fasching, R., and Prinz, F.B.: Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8(8), 2289 (2008).CrossRefGoogle ScholarPubMed
Su, P-C. and Prinz, F.B.: Nanoscale membrane electrolyte array for solid oxide fuel cells. Electrochem. Commun. 16(1), 77 (2012).Google Scholar
Chao, C-C., Hsu, C-M., Cui, Y., and Prinz, F.B.: Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5(7), 5692 (2011).Google Scholar
Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hütter, A., Graf, S., Infortuna, A., Müller, P., Rupp, J.L.M., Schneider, J., and Gauckler, L.J.: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18(20), 3158 (2008).Google Scholar
Hertz, J., Rothschild, A., and Tuller, H.: Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J. Electroceram. 22(4), 428 (2009).Google Scholar
Scherrer, B., Rossi, A., Martynczuk, J., Rossell, M.D., Bieberle-Hütter, A., Rupp, J.L.M., Erni, R., and Gauckler, L.J.: Impact of substrate material and annealing conditions on the microstructure and chemistry of yttria-stabilized-zirconia thin films. J. Power Sources 196(18), 7372 (2011).CrossRefGoogle Scholar
Timoshenko, S.: Theory of Elasticity (McGraw-Hill, United States, 1934).Google Scholar
Landau, L.L.D., Lifshitz, E.M., Kosevitch, A.M., and Pitaevskiĭ, L.P.: Theory of Elasticity, Vol. 7 (Butterworth-Heinemann, Waltham, MA, 1986).Google Scholar
Ziebart, V., Paul, O., and Baltes, H.: Strongly buckled square micromachined membranes. J. Microelectromech. Syst. 8(4), 423 (1999).Google Scholar
Cerda, E. and Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 074302 (2003).Google Scholar
Tallinen, T., Astrom, J.A., and Timonen, J.: The effect of plasticity in crumpling of thin sheets. Nat. Mater. 8(1), 25 (2009).Google Scholar
Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, UK, 2003).Google Scholar
Kerman, K., Tallinen, T., Ramanathan, S., and Mahadevan, L.: Elastic configurations of self-supported oxide membranes for fuel cells. J. Power Sources 222(0), 359 (2013).Google Scholar
Cheon, J.H., Shankar, P.S., and Singh, J.P.: Influence of processing methods on residual stress evolution in coated conductors. Supercond. Sci. Technol. 18(1), 142 (2005).Google Scholar
Evans, A., Prestat, M., Tölke, R., Schlupp, M.V.F., Gauckler, L.J., Safa, Y., Hocker, T., Courbat, J., Briand, D., de Rooij, N.F., and Courty, D.: Residual stress and buckling patterns of free-standing yttria-stabilized-zirconia membranes fabricated by pulsed laser deposition. Fuel Cells 12(4), 614 (2012).Google Scholar
Carneiro, J., Teixeira, V., Portinha, A., Vaz, F., and Ferreira, J.: A real time scale measurement of residual stress evolution during coating deposition using electric extensometry. Rev. Adv. Mater. Sci. 7, 32 (2004).Google Scholar
Quinn, D.J., Wardle, B., and Spearing, S.M.: Residual stress and microstructure of as-deposited and annealed, sputtered yttria-stabilized zirconia thin films. J. Mater. Res. 23(3), 609 (2008).Google Scholar
Xiao, Q., He, H., Shao, S., Shao, J., and Fan, Z.: Influences of deposition rate and oxygen partial pressure on residual stress and microstructure of YSZ thin films. Thin Solid Films 517(15), 4295 (2009).Google Scholar
Ohring, M.: Materials Science of Thin Films (Academic Press, San Diego, CA, 2001).Google Scholar
Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48(1), 31 (2000).Google Scholar
Narayanachari, K.V.L.V. and Raghavan, S.: Stress and texture development during sputtering of yttria, zirconia, and yttria stabilized zirconia films on Si substrates. J. Appl. Phys. 112(7), 074910 (2012).Google Scholar
Knoll, R.W. and Bradley, E.R.: Correlation between the stress and microstructure in bias-sputtered ZrO2-Y2O3 films. Thin Solid Films 117(3), 201 (1984).CrossRefGoogle Scholar
Infortuna, A., Harvey, A.S., and Gauckler, L.J.: Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv. Funct. Mater. 18(1), 127 (2008).Google Scholar
Lai, B.K., Xiong, H., Tsuchiya, M., Johnson, A.C., and Ramanathan, S.: Microstructure and microfabrication considerations for self-supported on-chip ultra-thin micro-solid oxide fuel cell membranes. Fuel Cells 9(5), 699 (2009).Google Scholar
Heiroth, S., Frison, R., Rupp, J.L.M., Lippert, T., Barthazy Meier, E.J., Müller Gubler, E., Döbeli, M., Conder, K., Wokaun, A., and Gauckler, L.J.: Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition. Solid State Ionics 191(1), 12 (2011).CrossRefGoogle Scholar
Garbayo, I., Dezanneau, G., Bogicevic, C., Santiso, J., Gràcia, I., Sabaté, N., and Tarancón, A.: Pinhole-free YSZ self-supported membranes for micro solid oxide fuel cell applications. Solid State Ionics 216(0), 64 (2012).Google Scholar
Rey-Mermet, S., Yan, Y., Sandu, C., Deng, G., and Muralt, P.: Nanoporous YSZ film in electrolyte membrane of micro-solid oxide fuel cell. Thin Solid Films 518(16), 4743 (2010).Google Scholar
Kwon, C-W., Son, J-W., Lee, J-H., Kim, H-M., Lee, H-W., and Kim, K-B.: High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Adv. Funct. Mater. 21(6), 1154 (2011).CrossRefGoogle Scholar
Lai, B-K., Kerman, K., and Ramanathan, S.: On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation. J. Power Sources 195(16), 5185 (2010).Google Scholar
Kerman, K., Lai, B-K., and Ramanathan, S.: Thin film nanocrystalline Ba0.5Sr0.5Co0.8Fe0.2O3: Synthesis, conductivity, and micro-solid oxide fuel cells. J. Power Sources 196(15), 6214 (2011).Google Scholar
Lai, B-K., Kerman, K., and Ramanathan, S.: Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells. J. Power Sources 196(4), 1826 (2011).Google Scholar
Balakrishnan, V., Ko, C., and Ramanathan, S.: In situ studies on twinning and cracking proximal to insulator–metal transition in self-supported VO2/Si3N4 membranes. J. Mater. Res. 27(11), 1476 (2012).Google Scholar
Fillingham, P.J.: Domain structure and twinning in crystals of vanadium dioxide. J. Appl. Phys. 38(12), 4823 (1967).Google Scholar
Van Overmeere, Q., Kerman, K., and Ramanathan, S.: Energy storage in ultrathin solid oxide fuel cells. Nano Lett. 12(7), 3756 (2012).CrossRefGoogle ScholarPubMed
Lubomirsky, I.: Practical applications of the chemical strain effect in ionic and mixed conductors. Monatsh. Chem. 140(9), 1025 (2009).Google Scholar
Duncan, K.L., Wang, Y., Bishop, S.R., Ebrahimi, F., and Wachsman, E.D.: Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89(10), 3162 (2006).Google Scholar
Bishop, S.R., Duncan, K.L., and Wachsman, E.D.: Thermo-chemical expansion in strontium-doped lanthanum cobalt iron oxide. J. Am. Ceram. Soc. 93(12), 4115 (2010).Google Scholar
Marrocchelli, D., Bishop, S.R., Tuller, H.L., and Yildiz, B.: Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Adv. Funct. Mater. 22(9), 1958 (2012).Google Scholar
Bishop, S., Marrocchelli, D., Fang, W., Amezawa, K., Yashiro, K., and Watson, G.: Reducing the chemical expansion coefficient in ceria by addition of zirconia. Energy Environ. Sci. 6(4), 11421146 (2013).Google Scholar
Tuller, H.L. and Bishop, S.R.: Point defects in oxides: Tailoring materials through defect engineering. Ann. Rev. Mater. Res. 41, 369 (2011).Google Scholar
Nair, J.P., Wachtel, E., Lubomirsky, I., Fleig, J., and Maier, J.: Anomalous expansion of CeO2 nanocrystalline membranes. Adv. Mater. 15(24), 2077 (2003).Google Scholar
Adler, S.B.: Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84(9), 2117 (2001).CrossRefGoogle Scholar
Bishop, S.R., Duncan, K.L., and Wachsman, E.D.: Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57(12), 3596 (2009).Google Scholar
Johnson, A.C., Baclig, A., Harburg, D.V., Lai, B-K., and Ramanathan, S.: Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195(4), 1149 (2010).Google Scholar
Barnett, S.A.: A new solid oxide fuel cell design based on thin film electrolytes. Energy 15(1), 1 (1990).Google Scholar
De Jonghe, L.C., Jacobson, C.P., and Visco, S.J.: Supported electrolyte thin film synthesis of solid oxide fuel cells. Ann. Rev. Mater. Res. 33(1), 169 (2003).Google Scholar
Ignatiev, A., Chen, X., Wu, N., Lu, Z., and Smith, L.: Nanostructured thin solid oxide fuel cells with high power density. Dalton Trans. (40), 5501 (2008).Google Scholar
Fleig, J., Tuller, H.L., and Maier, J.: Electrodes and electrolytes in micro-SOFCs: A discussion of geometrical constraints. Solid State Ionics 174(1–4), 261 (2004).Google Scholar
Kerman, K., Lai, B-K., and Ramanathan, S.: Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations. J. Power Sources 196(5), 2608 (2011).Google Scholar
Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414(6861), 345 (2001).Google Scholar
Srikar, V.T., Turner, K.T., Andrew Ie, T.Y., and Spearing, S.M.: Structural design considerations for micromachined solid-oxide fuel cells. J. Power Sources 125(1), 62 (2004).Google Scholar
Tang, Y., Stanley, K., Wu, J., Ghosh, D., and Zhang, J.: Design consideration of micro thin film solid-oxide fuel cells. J. Micromech. Microeng. 15(9), S185 (2005).Google Scholar
Yamamoto, N., Quinn, D.J., Wicks, N., Hertz, J.L., Cui, J., Tuller, H.L., and Wardle, B.L.: Nonlinear thermomechanical design of microfabricated thin plate devices in the post-buckling regime. J. Micromech. Microeng. 20(3), 035027 (2010).Google Scholar
Mutoro, E., Günther, S., Luerßen, B., Valov, I., and Janek, J.: Electrode activation and degradation: Morphology changes of platinum electrodes on YSZ during electrochemical polarisation. Solid State Ionics 179(33–34), 1835 (2008).Google Scholar
Galinski, H., Ryll, T., Elser, P., Rupp, J.L.M., Bieberle-Hütter, A., and Gauckler, L.J.: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B 82(23), 235415 (2010).Google Scholar
Kwon, C-W., Lee, J-I., Kim, K-B., Lee, H-W., Lee, J-H., and Son, J-W.: The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. J. Power Sources 210(0), 178 (2012).Google Scholar
Kerman, K., Lai, B-K., and Ramanathan, S.: Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2(6), 655 (2012).CrossRefGoogle Scholar
Wang, X., Huang, H., Holme, T., Tian, X., and Prinz, F.B.: Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. J. Power Sources 175(1), 75 (2008).Google Scholar
Marković, N., Schmidt, T., Stamenković, V., and Ross, P.: Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells 1(2), 105 (2001).Google Scholar
Noh, H-S., Hwang, J., Yoon, K., Kim, B-K., Lee, H-W., Lee, J-H., and Son, J-W.: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes. J. Power Sources 230(0), 109 (2013).CrossRefGoogle Scholar
Baumann, N., Mutoro, E., and Janek, J.: Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics 181(1–2), 7 (2010).Google Scholar
Brown, E.C., Wilke, S.K., Boyd, D.A., Goodwin, D.G., and Haile, S.M.: Polymer sphere lithography for solid oxide fuel cells: A route to functional, well-defined electrode structures. J. Mater. Chem. 20(11), 2190 (2010).Google Scholar
Kim, Y.B., Hsu, C-M., Connor, S.T., Gür, T.M., Cui, Y., and Prinz, F.B.: Nanopore patterned Pt array electrodes for triple phase boundary study in low temperature SOFC. J. Electrochem. Soc. 157(9), B1269 (2010).Google Scholar
Lin, A.Y. and McIntyre, P.C.: Morphological stability of mesoporous Pt thin films deposited via nanosphere lithography on YSZ. Electrochem. Solid-State Lett. 14(10), B96 (2011).Google Scholar
Simrick, N.J., Kilner, J.A., Atkinson, A., Rupp, J.L.M., Ryll, T.M., Bieberle-Hütter, A., Galinski, H., and Gauckler, L.J.: Micro-fabrication of patterned LSCF thin-film cathodes with gold current collectors. Solid State Ionics 192(1), 619 (2011).Google Scholar
Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H-Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B., and Barnett, S.A.: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5(7), 541 (2006).Google Scholar
Wilson, J.R., Gameiro, M., Mischaikow, K., Kalies, W., Voorhees, P.W., and Barnett, S.A.: Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity. Microsc. Microanal. 15(1), 71 (2009).Google Scholar
Mueller, D.N., De Souza, R.A., Weirich, T.E., Roehrens, D., Mayer, J., and Martin, M.: A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1-xCo0.8Fe0.2O3-[small delta] (BSCF) (x = 0.1 and 0.5). Phys. Chem. Chem. Phys. 12(35), 10320 (2010).Google Scholar
Niedrig, C., Taufall, S., Burriel, M., Menesklou, W., Wagner, S.F., Baumann, S., and Ivers-Tiffée, E.: Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)1. Solid State Ionics 197(1), 25 (2011).Google Scholar
Bishop, S.R., Duncan, K.L., and Wachsman, E.D.: Surface and bulk defect equilibria in strontium-doped lanthanum cobalt iron oxide. J. Electrochem. Soc. 156(10), B1242 (2009).Google Scholar
Fearn, S., Rossiny, J., and Kilner, J.: SIMS artifacts in the near surface depth profiling of oxygen conducting ceramics. Solid State Ionics 179(21–26), 811 (2008).CrossRefGoogle Scholar
Chen, Y., Jung, W., Cai, Z., Kim, J.J., Tuller, H.L., and Yildiz, B.: Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1-xFexO3 surfaces. Energy Environ. Sci. 5(7), 7979 (2012).Google Scholar
Huber, A-K., Falk, M., Rohnke, M., Luer, B., Gregoratti, L., Amati, M., and Janek, J.: In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O3 =/− δ Phys. Chem. Chem. Phys. 14(2), 751 (2012).Google Scholar
Avila-Paredes, H.J., Barrera-Calva, E., Anderson, H.U., De Souza, R.A., Martin, M., Munir, Z.A., and Kim, S.: Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J. Mater. Chem. 20(30), 6235 (2010).Google Scholar
Kim, S., Anselmi‐Tamburini, U., Park, H.J., Martin, M., and Munir, Z.A.: Unprecedented room‐temperature electrical power generation using nanoscale fluorite‐structured oxide electrolytes. Adv. Mater. 20(3), 556 (2008).Google Scholar
Pergolesi, D., Fabbri, E., and Traversa, E.: Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12(7), 977 (2010).Google Scholar
Coors, W.G.: Steam reforming, and water-gas shift by steam permeation in a protonic ceramic fuel cell. J. Electrochem. Soc. 151(7), A994 (2004).Google Scholar
Fabbri, E., Pergolesi, D., and Traversa, E.: Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 39(11), 4355 (2010).Google Scholar
Podpirka, A., Viswanath, B., and Ramanathan, S.: Active low temperature oxidation as a route to minimize electrode–oxide interface reactions in nanoscale capacitors. J. Appl. Phys. 108(2), 024106 (2010).Google Scholar
Price, M., Dong, J., Gu, X., Speakman, S.A., Payzant, E.A., and Nenoff, T.M.: Formation of YSZ–SDC solid solution in a nanocrystalline heterophase system and its effect on the electrical conductivity. J. Am. Ceram. Soc. 88(7), 1812 (2005).Google Scholar
Tompsett, G.A., Sammes, N.M., and Yamamoto, O.: Ceria–yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. J. Am. Ceram. Soc. 80(12), 3181 (1997).Google Scholar
Ginestra, C.N., Sreenivasan, R., Karthikeyan, A., Ramanathan, S., and McIntyre, P.C.: Atomic layer deposition of Y2O3/ ZrO2 nanolaminates: A route to ultrathin solid-state electrolyte membranes. Electrochem. Solid-State Lett. 10(10), B161 (2007).Google Scholar
Karthikeyan, A., Tsuchiya, M., and Ramanathan, S.: Apatite-phase synthesis from interdiffusion in doped CeO2–SiO2 thin-film superlattices and in situ conductivity studies. Electrochem. Solid-State Lett. 11(11), K101 (2008).CrossRefGoogle Scholar
Fan, Z., An, J., Iancu, A., and Prinz, F.B.: Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. J. Power Sources 218(0), 187 (2012).Google Scholar
Chueh, W.C., Hao, Y., Jung, W., and Haile, S.M.: High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat. Mater. 11(2), 155 (2012).Google Scholar
Takagi, Y., Lai, B-K., Kerman, K., and Ramanathan, S.: Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Energy Environ. Sci. 4(9), 3473 (2011).Google Scholar
Lai, B-K., Kerman, K., and Ramanathan, S.: Methane-fueled thin film micro-solid oxide fuel cells with nanoporous palladium anodes. J. Power Sources 196(15), 6299 (2011).CrossRefGoogle Scholar
Takagi, Y., Adam, S., and Ramanathan, S.: Nanostructured ruthenium – gadolinia-doped ceria composite anodes for thin film solid oxide fuel cells. J. Power Sources 217(0), 543 (2012).Google Scholar
Takagi, Y., Kerman, K., Ko, C., and Ramanathan, S.: Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas. J. Power Sources 243(0), 1 (2013).Google Scholar
Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J., McEvoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J.: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3(1), 17 (2004).Google Scholar
Gorte, R.J., Park, S., Vohs, J.M., and Wang, C.: Anodes for direct oxidation of dry hydrocarbons in a solid‐oxide fuel cell. Adv. Mater. 12(19), 1465 (2000).Google Scholar
Mogensen, M. and Kammer, K.: Conversion of hydrocarbons in solid oxide fuel cells. Ann. Rev. Mater. Res. 33(1), 321 (2003).Google Scholar
Schaevitz, S.B.: Powering the wireless world with MEMS. Proc. SPIE 8248, 824802 (2012).Google Scholar
Lai, B-K., Johnson, A.C., Tsuchiya, M., and Ramanathan, S.: Towards wafer-scale fabrication and 3D integration of micro-solid oxide fuel cells for portable energy. Proc. SPIE 7679, 767916 (2010).Google Scholar
Bieberle-Hütter, A., Beckel, D., Infortuna, A., Muecke, U.P., Rupp, J.L.M., Gauckler, L.J., Rey-Mermet, S., Muralt, P., Bieri, N.R., Hotz, N., Stutz, M.J., Poulikakos, D., Heeb, P., Müller, P., Bernard, A., Gmür, R., and Hocker, T.: A micro-solid oxide fuel cell system as battery replacement. J. Power Sources 177(1), 123 (2008).Google Scholar
Bieberle-Hutter, A., Santis-Alvarez, A.J., Jiang, B., Heeb, P., Maeder, T., Nabavi, M., Poulikakos, D., Niedermann, P., Dommann, A., Muralt, P., Bernard, A., and Gauckler, L.J.: Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems. Lab Chip 12(22), 4894 (2012).Google Scholar
Zaman, J. and Chakma, A.: Inorganic membrane reactors. J. Membr. Sci. 92(1), 1 (1994).Google Scholar
Baker, R.W.: Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41(6), 1393 (2002).Google Scholar
Balachandran, U., Ma, B., Maiya, P., Mieville, R., Dusek, J., Picciolo, J., Guan, J., Dorris, S., and Liu, M.: Development of mixed-conducting oxides for gas separation. Solid State Ionics 108(1), 363 (1998).Google Scholar
Norby, T. and Larring, Y.: Mixed hydrogen ion–electronic conductors for hydrogen permeable membranes. Solid State Ionics 136137(0), 139 (2000).Google Scholar
Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 203(0), 4 (2012).Google Scholar
Dyer, P.N., Richards, R.E., Russek, S.L., and Taylor, D.M.: Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134(1–2), 21 (2000).Google Scholar
Tsai, C-Y., Dixon, A.G., Moser, W.R., and Ma, Y.H.: Dense perovskite membrane reactors for partial oxidation of methane to syngas. AIChE J. 43(S11), 2741 (1997).Google Scholar
Wood, R.J., Finio, B., Karpelson, M., Pérez-Arancibia, N.O., Sreetharan, P., and Whitney, J.P.: Challenges for micro-scale flapping-wing micro air vehicles. Proc. SPIE 8373, 83731J (2012).Google Scholar
Koeneman, P.B., Busch-Vishniac, I.J., and Wood, K.L.: Feasibility of micro power supplies for MEMS. J. Microelectromech. Syst. 6(4), 355 (1997).CrossRefGoogle Scholar