Skip to main content Accessibility help
×
Home

Competitive interplay of deposition and etching processes in atomic layer growth of cobalt and nickel metal films

  • Alexander Sasinska (a1), Jennifer Leduc (a1), Michael Frank (a1), Lisa Czympiel (a1), Thomas Fischer (a1), Silke H. Christiansen (a2) and Sanjay Mathur (a1)...

Abstract

Atomic layer deposition (ALD) of air stable cobalt and nickel complexes based on tridentate enaminones N,N-(4,4,4-trifluorobut-1-en-3-on)-dimethylethyldiamine (Htfb-dmeda) and N,N-(4,4,4-trifluorobut-1-en-3-on)-dimethylpropyldiamine (Htfb-dmpda) successfully produced metallic cobalt and nickel thin films. Detailed X-ray photoelectron spectroscopy (XPS) studies on the binding interaction of the first precursor monolayer with the surface functional groups elucidated the chemisorption behavior of the new precursor systems. A reactive remote hydrogen plasma was used as the co-reactant to activate the precursor decomposition yielding metal hydroxide intermediates. Subsequent hydrogen plasma etching of as-deposited films resulted in phase-pure metallic films through a recrystallization process, verified by surface and sub-surface XPS. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses revealed pinhole-free films, with low surface roughness (0.2 ± 0.06 nm root mean square, RMS) for both, cobalt and nickel thin films. Herein, the competitive role of hydrogen as etchant and reactant was demonstrated as prolonged plasma exposure time periods resulted in the formation of metal hydrides. This is mostly due to the catalytic dissociation of molecular hydrogen on transition metal surfaces, which already occurs upon low energy input.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: sanjay.mathur@uni-koeln.de

Footnotes

Hide All
b)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Bader, S.D.: Magnetism in low dimensionality. Surf. Sci. 500, 172 (2002).
2.Michaeli, K., Varade, V., Naaman, R., and Waldeck, D.H.: A new approach towards spintronics-spintronics with no magnets. J. Phys.: Condens. Matter 29, 103002 (2017).
3.Ago, H., Ito, Y., Mizuta, N., Yoshida, K., Hu, B., Orofeo, C.M., Tsuji, M., Ikeda, K., and Mizuno, S.: Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4, 7407 (2010).
4.Losurdo, M., Giangregorio, M.M., Capezzuto, P., and Bruno, G.: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).
5.Falk-Windisch, H., Claquesin, J., Sattari, M., Svensson, J.E., and Froitzheim, J.: Co- and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells. J. Power Sources 343, 1 (2017).
6.Beckel, D., Bieberle-Hutter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., and Gauckler, L.J.: Thin films for micro solid oxide fuel cells. J. Power Sources 173, 325 (2007).
7.Reader, A.H., Vanommen, A.H., Weijs, P.J.W., Wolters, R.A.M., and Oostra, D.J.: Transition-metal silicides in silicon technology. Rep. Prog. Phys. 56, 1397 (1993).
8.George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).
9.Puurunen, R.L.: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).
10.Liu, S., Tan, J.M., Gulec, A., Crosby, L.A., Drake, T.L., Schweitzer, N.M., Delferro, M., Marks, L.D., Marks, T.J., and Stair, P.C.: Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition. Organometallics 36, 818 (2017).
11.Elliott, S.D., Dey, G., and Maimaiti, Y.: Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations. J. Chem. Phys. 146, 052822 (2017).
12.Griffiths, M.B.E., Pallister, P.J., Mandia, D.J., and Barry, S.T.: Atomic layer deposition of gold metal. Chem. Mater. 28, 44 (2016).
13.Makela, M., Hatanpaa, T., Mizohata, K., Meinander, K., Niinisto, J., Raisanen, J., Ritala, M., and Leskela, M.: Studies on thermal atomic layer deposition of silver thin films. Chem. Mater. 29, 2040 (2017).
14.Mäkelä, M., Hatanpää, T., Mizohata, K., Räisänen, J., Ritala, M., and Leskelä, M.: Thermal atomic layer deposition of continuous and highly conducting gold thin films. Chem. Mater. 29, 6130 (2017).
15.Liu, H.F.: Recent progress in atomic layer deposition of multifunctional oxides and two-dimensional transition metal dichalcogenides. J. Mol. Eng. Mater. 4, 1640010 (2016).
16.Kim, H.G. and Leek, H.B.R.: Atomic layer deposition on 2D materials. Chem. Mater. 29, 3809 (2017).
17.Ryu, S.W., Yoon, J., Moon, H.S., Shong, B., Kim, H., and Lee, H.B.R.: Atomic layer deposition of 1D and 2D nickel nanostructures on graphite. Nanotechnology 28, 115301 (2017).
18.Austin, D.Z., Jenkins, M.A., Allman, D., Hose, S., Price, D., Dezelah, C.L., and Conley, J.F.: Atomic layer deposition of ruthenium and ruthenium oxide using a zero-oxidation state precursor. Chem. Mater. 29, 1107 (2017).
19.Lu, J.L., Elam, J.W., and Stair, P.C.: Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 71, 410 (2016).
20.Ma, Q., Guo, H.S., Gordon, R.G., and Zaera, F.: Surface chemistry of copper(I) acetamidinates in connection with atomic layer deposition (ALD) processes. Chem. Mater. 23, 3325 (2011).
21.Gordon, P.G., Kurek, A., and Barry, S.T.: Trends in copper precursor development for CVD and ALD applications. ECS J. Solid State Sci. Technol. 4, N3188 (2015).
22.Lee, B.H., Hwang, J.K., Nam, J.W., Lee, S.U., Kim, J.T., Koo, S.M., Baunemann, A., Fischer, R.A., and Sung, M.M.: Low-temperature atomic layer deposition of copper metal thin films: Self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc. Angew. Chem., Int. Ed. 48, 4536 (2009).
23.Devi, A.: ‘Old chemistries’ for new applications: Perspectives for development of precursors for MOCVD and ALD applications. Coord. Chem. Rev. 257, 3332 (2013).
24.Coyle, J.P., Dey, G., Sirianni, E.R., Kemell, M.L., Yap, G.P.A., Ritala, M., Leskela, M., Elliott, S.D., and Barry, S.T.: Deposition of copper by plasma-enhanced atomic layer deposition using a novel N-heterocyclic carbene precursor. Chem. Mater. 25, 1132 (2013).
25.Sarr, M., Bahlawane, N., Arl, D., Dossot, M., McRae, E., and Lenoble, D.: Tailoring the properties of atomic layer deposited nickel and nickel carbide thin films via chain-length control of the alcohol reducing agents. J. Phys. Chem. C 118, 23385 (2014).
26.Mouat, A.R., Mane, A.U., Elam, J.W., Delferro, M., Marks, T.J., and Stair, P.C.: Volatile hexavalent oxo-amidinate complexes: Molybdenum and tungsten precursors for atomic layer deposition. Chem. Mater. 28, 1907 (2016).
27.Maimaiti, Y. and Elliott, S.D.: Kinetics and coverage dependent reaction mechanisms of the copper atomic layer deposition from copper dimethylamino-2-propoxide and diethylzinc. Chem. Mater. 28, 6282 (2016).
28.Miikkulainen, V., Leskela, M., Ritala, M., and Puurunen, R.L.: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).
29.Ramos, K.B., Saly, M.J., and Chabal, Y.J.: Precursor design and reaction mechanisms for the atomic layer deposition of metal films. Coord. Chem. Rev. 257, 3271 (2013).
30.Lee, H.B.R., Kim, W.H., Lee, J.W., Kim, J.M., Heo, K., Hwang, I.C., Park, Y., Hong, S., and Kim, H.: High quality area-selective atomic layer deposition Co using ammonia gas as a reactant. J. Electrochem. Soc. 157, D10 (2010).
31.Elko-Hansen, T.D.M. and Ekerdt, J.G.: XPS investigation of the atomic layer deposition half reactions of bis(N-tert-butyl-N′-ethylpropionamidinato) cobalt(II). Chem. Mater. 26, 2642 (2014).
32.Lim, B.S., Rahtu, A., and Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749 (2003).
33.Lee, J. and Lee, J.G.: Deposition characteristics of Co thin films over high aspect ratio trenches by MOCVD using CO2(CO)8 as a precursor. J. Korean Phys. Soc. 49, S697 (2006).
34.Lee, J., Park, H.J., Won, S.H., Jeong, K.H., Jung, H.S., Kim, C., Bang, H.J., Lee, C.M., Kim, J.H., Kwon, G.C., Cho, H.L., Soh, H.S., and Lee, J.G.: Consecutive CVD of Al/Co bilayers on SiO2 or Alq3 surfaces at low temperature of 70 °C. J. Electrochem. Soc. 154, H833 (2007).
35.Lee, J., Yang, H.J., Lee, J.H., Kim, J.Y., Nam, W.J., Shin, H.J., Ko, N., Lee, J.G., Lee, E.G., and Kim, C.S.: Highly conformal deposition of pure Co films by MOCVD using Co2(CO)8 as a precursor. J. Electrochem. Soc. 153, G539 (2006).
36.Lee, J.G., Park, H.J., and Lee, J.G.: OTS-templated cobalt deposition using Co2(CO)8 precursor. Solid State Phenom. 124–126, 531 (2007).
37.Ye, D.X., Pimanpang, S., Jezewski, C., Tang, F., Senkevich, J.J., Wang, G.C., and Lu, T.M.: Low temperature chemical vapor deposition of Co thin films from Co2(CO)8. Thin Solid Films 485, 95 (2005).
38.Crawford, N.R.M., Knutsen, J.S., Yang, K.A., Haugstad, G., McKernan, S., McCormick, F.B., and Gladfelter, W.L.: Splitting the coordinated nitric oxide in Co(CO)3(NO) leads to a nanocrystalline, conductive oxonitride of cobalt. Chem. Vap. Deposition 4, 181 (1998).
39.Ivanova, A.R., Nuesca, G., Chen, X., Goldberg, C., Kaloyeros, A.E., Arkles, B., and Sullivan, J.J.: The effects of processing parameters in the chemical vapor deposition of cobalt from cobalt tricarbonyl nitrosyl. J. Electrochem. Soc. 146, 2139 (1999).
40.Lane, P.A., Oliver, P.E., Wright, P.J., Reeves, C.L., Pitt, A.D., and Cockayne, B.: Metal organic CVD of cobalt thin films using cobalt tricarbonyl nitrosyl. Chem. Vap. Deposition 4, 183 (1998).
41.Deo, N., Bain, M.F., Montgomery, J.H., and Gamble, H.S.: Study of magnetic properties of thin cobalt films deposited by chemical vapour deposition. J. Mater. Sci.: Mater. Electron. 16, 387 (2005).
42.Lee, H.B.R., Son, J.Y., and Kim, H.: Nitride mediated epitaxy of CoSi2 through self-interlayer-formation of plasma-enhanced atomic layer deposition Co. Appl. Phys. Lett. 90, 213509 (2007).
43.Lee, H.B.R. and Kim, H.: High-quality cobalt thin films by plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 9, G323 (2006).
44.Lee, K., Kim, K., Park, T., Jeon, H., Lee, Y., Kim, J., and Yeom, S.: Characteristics of Ti-capped Co films deposited by a remote plasma ALD method using cyclopentadienylcobalt dicarbonyl. J. Electrochem. Soc. 154, H899 (2007).
45.Pugh, T., Cosham, S.D., Hamilton, J.A., Kingsley, A.J., and Johnson, A.L.: Cobalt(III) diazabutadiene precursors for metal deposition: Nanoparticle and thin film growth. Inorg. Chem. 52, 13719 (2013).
46.Lee, K., Kim, K., Jeon, H., Lee, Y., Kim, J., and Yeom, S.: Characteristics of cobalt films deposited by using a remote plasma ALD method with a CpCo(CO)2 precursor. J. Korean Phys. Soc. 50, 1141 (2007).
47.Kim, K., Lee, K., Han, S., Park, T., Lee, Y., Kim, J., Yeom, S., and Jeon, H.: Comparison of co films deposited by remote plasma atomic layer deposition method with cyclopentadienylcobalt dicarbonyl [CpCo(CO)2] and dicobalt octacarbonyl [Co-2(CO)(8)]. Jpn. J. Appl. Phys. 46, L173 (2007).
48.Lim, B.S., Rahtu, A., Park, J.S., and Gordon, R.G.: Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates. Inorg. Chem. 42, 7951 (2003).
49.Dai, M., Kwon, J., Halls, M.D., Gordon, R.G., and Chabal, Y.J.: Surface and interface processes during atomic layer deposition of copper on silicon oxide. Langmuir 26, 3911 (2010).
50.Han, S.H., George, S.M., Lee, G.Y., Han, J.H., Park, B.K., Kim, C.G., Son, S.U., Lah, M.S., and Chung, T-M.: New heteroleptic cobalt precursors for deposition of cobalt-based thin films. ACS Omega 2, 5486 (2017).
51.Kalutarage, L.C., Martin, P.D., Heeg, M.J., and Winter, C.H.: Volatile and thermally stable mid to late transition metal complexes containing alpha-imino alkoxide ligands, a new strongly reducing coreagent, and thermal atomic layer deposition of Ni, Co, Fe, and Cr metal films. J. Am. Chem. Soc. 135, 12588 (2013).
52.Kerrigan, M.M., Klesko, J.P., Rupich, S.M., Dezelah, C.L., Kanjolia, R.K., Chabal, Y.J., and Winter, C.H.: Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl) cobalt and formic acid. J. Chem. Phys. 146, 052813 (2017).
53.Premkumar, P.A., Turchanin, A., and Bahlawane, N.: Effect of solvent on the growth of Co and Co2C using pulsed-spray evaporation chemical vapor deposition. Chem. Mater. 19, 6206 (2007).
54.Premkumar, P.A., Bahlawane, N., Reiss, G., and Kohse-Hoeinghaus, K.: CVD of metals using alcohols and metal acetylacetonates, part II: Role of solvent and characterization of metal films made by pulsed spray evaporation CVD. Chem. Vap. Deposition 13, 227 (2007).
55.Hojo, M., Masuda, R., Kokuryo, Y., Shioda, H., and Matsuo, S.: Electrophilic substitutions of olefinic hydrogens. 2. Acylation of vinyl ethers and N-vinyl amides. Chem. Lett. 5, 499 (1976).
56.Schlafer, J., Graf, D., Fornalczyk, G., Mettenborger, A., and Mathur, S.: Fluorinated cerium(IV) enaminolates: Alternative precursors for chemical vapor deposition of CeO2 thin films. Inorg. Chem. 55, 5422 (2016).
57.Hausmann, D.M. and Gordon, R.G.: Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251 (2003).
58.Keranen, J., Guimon, C., Liskola, E., Auroux, A., and Niinisto, L.: Atomic layer deposition and surface characterization of highly dispersed titania/silica-supported vanadia catalysts. Catal. Today 78, 149 (2003).
59.Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.S.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co, and Ni. Appl. Surf. Sci. 257, 2717 (2011).
60.Sasinska, A., Ritschel, D., Czympiel, L., and Mathur, S.: Metallic copper thin films grown by plasma-enhanced atomic layer deposition of air stable precursors. Adv. Eng. Mater. 19, 1600593 (2017).
61.Choi, K.K., Yun, J.H., and Rhee, S.W.: Effect of hydrogen remote plasma annealing on the characteristics of copper film. Thin Solid Films 429, 255 (2003).
62.Kariniemi, M., Niinisto, J., Vehkamaki, M., Kemell, M., Ritala, M., Leskela, M., and Putkonen, M.: Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study. J. Vac. Sci. Technol., A 30, 01A115 (2012).
63.Knoops, H.C.M., Langereis, E., van de Sanden, M.C.M., and Kessels, W.M.M.: Conformality of plasma-assisted ALD: Physical processes and modeling. J. Electrochem. Soc. 157, G241 (2010).
64.Schindler, P., Logar, M., Provine, J., and Prinz, F.B.: Enhanced step coverage of TiO2 deposited on high aspect ratio surfaces by plasma-enhanced atomic layer deposition. Langmuir 31, 5057 (2015).
65.Mcintyre, N.S. and Cook, M.G.: X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208 (1975).
66.Choudhury, T., Saied, S.O., Sullivan, J.L., and Abbot, A.M.: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion-bombardment. J. Phys. D: Appl. Phys. 22, 1185 (1989).

Keywords

Type Description Title
WORD
Supplementary materials

Sasinska et al. supplementary material
Sasinska et al. supplementary material 1

 Word (3.3 MB)
3.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed