Skip to main content Accessibility help

A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales

  • L. Philippe (a1), P. Schwaller (a1), G. Bürki (a1) and J. Michler (a1)


A comparison of microcompression and microtensile methods to study mechanical properties of electrodeposited nanocrystalline (nc) nickel has been performed. Microtensile tests that probe a volume of more than 2 × 106 μm3 show reasonable agreement with results from microcompression tests that probe much smaller volumes down to a few μm3. Differences between the two uniaxial techniques are discussed in terms of measurements errors, probed volume and surface effects, strain rate, and influence of stress state. Uniaxial solicitation in compression mode revealed several advantages for studying stress–strain properties.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Yang, Y., Imasogie, B.I., Allameh, S.M., Boyce, B., Lian, K., Lou, J.Soboyejo, W.O.: Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 444, 39 2007
2Li, B.Chen, Q.: Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel. Sens. Actuators, A 126, 187 2006
3Moody, N.R., Jungk, J.M., Kennedy, M.S., Prasad, S.V., Bahr, D.F.Gerberich, W.W.: Mechanical properties of wear tested LIGA nickel in Fundamentals of Nanoindentation and Nanotribology III,, edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R7.8
4Kumar, K.S., Van Swygenhoven, H.Suresh, S.: Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743 2003
5Nix, W.D., Greer, J.R., Feng, G.Lilleodden, E.T.: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 2007
6Mazza, E., Abel, S.Dual, J.: Experimental determination of mechanical properties of Ni and Ni–Fe microbars. Microsyst. Technol. 2, 197 1996
7Haque, M.A.Saif, M.T.A.: In-situ tensile testing of nanoscale specimens in SEM and TEM. Exp. Mech. 42(1), 123128 2001
8Moser, B., Schwaiger, R.Dao, M.: Size effects on deformation and fracture on nanostructured materials in Nanostructured Coating, edited by A. Cavaleiro and J.Th.M. De Hosson, Nanostructure Science and Technology Series Springer New York 2006
9Greer, J.R., Oliver, W.C.Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 2005
10Uchic, M.D., Dimiduk, D.M., Florando, J.N.Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 2004
11Espinosa, H.D., Panico, M., Berbenni, S.Schwartz, K.W.: Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding fcc thin films. Int. J. Plast. 22, 2091 2006
12Nix, W.D.Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 1998
13Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussineq for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965
14Bei, H., Shim, S., Miller, M.K., Pharr, G.R.George, E.P.: Effects of focused-ion-beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. APL 91, 111915 2007
15Moser, B., Wasmer, K., Barbieri, L.Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22(4), 1004 2007
16Zhang, H., Schuster, B.E., Wie, Q.Ramesh, K.T.: The design of accurate micro-compression experiments. Scripta Mater. 54, 181 2006
17Mohamad, W.F., Ajar, A. AbouSaleh, A.N.: Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector. Renew. Ener. 31, 1493 2006
18Asaro, R.J.Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 2005
19Tellkamp, V.L., Melmed, A.Lavernia, E.J.: Grain growth behavior of a nanostructured 5083 Al–Mg alloy. Metal. Mater. Trans. A 32, 2335 2001
20Hanlon, T., Kwon, Y-N.Suresh, S.: Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater. 49, 675 2003
21Cheng, S., Spencer, J.A.Milligan, W.W.: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 2003
22Loubet, J.L., Bauer, M., Tonck, A., Bec, S.Gauthier-Manuel, B.: Mechanical Properties and Deformation Behaviour of Materials Having Ultra-fine Microstructures Kluwer Academic Publishers The Netherlands 1993 429–447
23Chudoba, T., Schwaller, P., Rabe, R., Breguet, J-M.Michler, J.: Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters. Philos. Mag. 86(33–35), 5265 2006


A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales

  • L. Philippe (a1), P. Schwaller (a1), G. Bürki (a1) and J. Michler (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed