Skip to main content Accessibility help
×
Home

A comparison of C54-TiSi2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing

  • L.A. Clevenger (a1), R.A. Roy (a1), C. Cabral (a1), K.L. Saenger (a1), S. Brauer (a1), G. Morales (a2), K.F. Ludwig (a2), G. Gifford (a3), J. Bucchignano (a1), J. Jordan-Sweet (a1), P. DeHaven (a4) and G.B. Stephenson (a5)...

Abstract

We demonstrate the use of a synchrotron radiation source for in situ x-ray diffraction analysis during rapid thermal annealing (RTA) of 0.35 μm Salicide (self-aligned silicide) and 0.4 μm Polycide (silicided polysilicon) TiSi2 Complementary Metal Oxide Semiconductor (CMOS) gate structures. It is shown that the transformation from the C49 to C54 phase of TiSi2 occurs at higher temperatures in submicron gate structures than in unpatterned blanket films. In addition, the C54 that forms in submicron structures is (040) oriented, while the C54 that forms in unpatterned Salicide films is randomly oriented. Although the preferred oreintation of the initial C49 phase was different in the Salicide and Polycide gate structures, the final orientation of the C54 phase formed was the same. An incomplete conversion of C49 into C54-TiSi2 during the RTA of Polycide gate structures was observed and is attributed to the retarding effects of phosphorus on the transition.

Copyright

References

Hide All
1Scott, D.B., Chapman, R.A., Wei, C., Mahant-Shetti, S.S., Haken, R.A., and Holloway, T. C., IEEE Trans. Electron Devices 34, 562 (1987).
2Mann, R.W. and Clevenger, L. A., J. Electrochem. Soc. 141, 1347 (1994).
3Clevenger, L.A. and Mann, R.W., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R. W., Mantl, S., Schowalter, L. J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 14.
4Lasky, J., Nakos, J., Cain, O., and Giess, P., IEEE Trans. Electron Devices 38, 2629 (1991).
5Agnello, P.D. and Fink, A., J. Electron. Mater. 22, 661 (1993).
6Ganin, E., Wind, S., Ronsheim, P., Yapsir, A., Barmak, K., Bucchingnano, J., and Assenze, R., in Flow and Microstructure of Dense Suspensions, edited by Struble, L. J., Zukoski, C.F., and Maitland, G. (Mater. Res. Soc. Symp. Proc. 289, Pittsburgh, PA, 1993), p. 109.
7Matsubara, Y., Hariuchi, T., and Okumura, K., Appl. Phys. Lett. 62, 2634 (1993).
8Hensel, J. C., Vandenberg, J. M., Unterwald, F. C., and Maury, A., Appl. Phys. Lett. 51, 1100 (1987).
9Stephenson, G.B., Nucl. Instrum. Methods, Phys. Res. A 226, 447 (1988).
10Stephenson, G. B., Ludwig, K. F. Jr., Jordan-Sweet, J. L., Brauer, S., Mainville, J., Yang, Y. S., and Sutton, M., Rev. Sci. Instrum. 60, 1537 (1989).
11Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed., part 1 (Pergamon, New York, 1981), Sees. 4, 56.
12Beyers, R., Coulman, D., and Merchant, P., J. Appl. Phys. 61, 5110 (1987).
13Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci. Technol. 2, 264 (1984).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed