Skip to main content Accessibility help
×
Home

Comparing sintering and atomic layer deposition as methods to mechanically reinforce nanocolloidal crystals

  • Di Zhang (a1), Yue Xu (a1), Gang Feng (a1), Yun-Ru Huang (a2) and Daeyeon Lee (a2)...

Abstract

Nanocolloidal crystals (NCCs) have promising applications in optical and photonic devices. However, it is critical to mechanically reinforce NCCs for device reliability, since as-synthesized NCCs are fragile due to weak interparticle bonding. Thermal sintering is currently the most common reinforcement technique; however, this method could induce serious cracking and is not suitable for temperature-sensitive materials. In this study, by characterizing silica NCCs reinforced through sintering and alumina atomic layer deposition (ALD), we find that the ALD treatment is much more effective for hardening, stiffening, and more importantly toughening NCCs. Thermally sintered NCCs are prone to indentation-induced cracking due to large residual tensile stress, significantly impairing the toughness. In contrast, the ALD treatment toughens NCCs by much over 300%. Our finding provides insights for reinforcing and toughening various nanoparticle-based and nanoporous materials.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: gang.feng@villanova.edu

References

Hide All
1. Holtz, J.H. and Asher, S.A.: Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653), 829 (1997).
2. Vlasov, Y.A., Bo, X-Z., Sturm, J.C., and Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289 (2001).
3. Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460), 1989 (2000).
4. Rinne, S.A., Garcia-Santamaria, F., and Braun, P.V.: Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photonics 2(1), 52 (2008).
5. Zhao, Y. and Avrutsky, I.: Two-dimensional colloidal crystal corrugated waveguides. Opt. Lett. 24(12), 817 (1999).
6. Istrate, E. and Sargent, E.H.: Photonic crystal heterostructures—resonant tunnelling, waveguides and filters. J. Opt. A: Pure Appl. Opt. 4(6), S242 (2002).
7. Lee, K. and Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534 (2000).
8. Zhang, L., Prosser, J.H., Feng, G., and Lee, D.: Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films. Nanoscale 4(20), 6543 (2012).
9. Dafinone, M.I., Feng, G., Brugarolas, T., Tettey, K.E., and Lee, D.: Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5(6), 5078 (2011).
10. Gallego-Gómez, F., Morales Flórez, V., Blanco, Á., de la Rosa Fox, N., and López, C.: Water-dependent micromechanical and rheological properties of silica colloidal crystals studied by nanoindentation. Nano Lett. 12(9), 4920 (2012).
11. Zhou, J., Li, H., Ye, L., Liu, J., Wang, J., Zhao, T., Jiang, L., and Song, Y.: Facile fabrication of tough SiC inverse opal photonic crystals. J. Phys. Chem. C 114(50), 22303 (2010).
12. Shen, Z., Yang, Y., Lu, F., Bao, B., and You, B.: Self-assembly of binary particles and application as structural colors. Polym. Chem. 3(9), 2495 (2012).
13. Miguez, H., Blanco, A., Lopez, C., Meseguer, F., Yates, H.M., Pemble, M.E., Lopez-Tejeira, F., Garcia-Vidal, F.J., and Sanchez-Dehesa, J.: Face centered cubic photonic bandgap materials based on opal-semiconductor composites. J. Lightwave Technol. 17(11), 1975 (1999).
14. Mayoral, R., Requena, J., Moya, J.S., López, C., Cintas, A., Miguez, H., Meseguer, F., Vázquez, L., Holgado, M., and Blanco, Á.: 3D Long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Adv. Mater. 9(3), 257 (1997).
15. Kuai, S.L., Zhang, Y.Z., Truong, V.V., and Hu, X.F.: Improvement of optical properties of silica colloidal crystals by sintering. Appl. Phys. A 74(1), 89 (2002).
16. Van Le, T., Ross, E.E., Velarde, T.R.C., Legg, M.A., and Wirth, M.J.: Sintered silica colloidal crystals with fully hydroxylated surfaces. Langmuir 23(16), 8554 (2007).
17. Míguez, H., Meseguer, F., López, C., Blanco, Á., Moya, J.S., Requena, J., Mifsud, A., and Fornés, V.: Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering. Adv. Mater. 10(6), 480 (1998).
18. Gouvêa, D. and Castro, R.H.R.: Sintering: The role of interface energies. Appl. Surf. Sci. 217(1–4), 194 (2003).
19. Gates, B., Park, S.H., and Xia, Y.: Tuning the photonic bandgap properties of crystalline arrays of polystyrene beads by annealing at elevated temperatures. Adv. Mater. 12(9), 653 (2000).
20. Machii, N. and Nakamura, A.M.: Experimental study on static and impact strength of sintered agglomerates. Icarus 211, 885 (2011).
21. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., and Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282(5390), 897 (1998).
22. Pallavidino, L., Razo, D.S., Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M., Andreani, L.C., Ricciardi, C., Celasco, E., Quaglio, M., and Giorgis, F.: Synthesis, characterization and modelling of silicon based opals. J. Non-Cryst. Solids 352(9–20), 1425 (2006).
23. Kuai, S-L., Truong, V-V., Haché, A., and Hu, X-F.: A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates. J. Appl. Phys. 96(11), 5982 (2004).
24. Kuai, S., Badilescu, S., Bader, G., Brüning, R., Hu, X., and Truong, V.V.: Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating. Adv. Mater. 15(1), 73 (2003).
25. Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., and Aizenberg, J.: Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. U. S. A. 107(23), 10354 (2010).
26. Johnson, N.P., McComb, D.W., Richel, A., Treble, B.M., and De La Rue, R.M.: Synthesis and optical properties of opal and inverse opal photonic crystals. Synth. Met. 116(1–3), 469 (2001).
27. Chen, X., Wang, L., Wen, Y., Zhang, Y., Wang, J., Song, Y., Jiang, L., and Zhu, D.: Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. J. Mater. Chem. 18(19), 2262 (2008).
28. Gu, Z.Z., Kubo, S., Fujishima, A., and Sato, O.: Infiltration of colloidal crystal with nanoparticles using capillary forces: A simple technique for the fabrication of films with an ordered porous structure. Appl. Phys. A 74, 127 (2002).
29. Kubo, S., Gu, Z-Z., Takahashi, K., Fujishima, A., Segawa, H., and Sato, O.: Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure. J. Am. Chem. Soc. 126(26), 8314 (2004).
30. King, J.S., Gaillot, D.P., Graugnard, E., and Summers, C.J.: Conformally back-filled, non-close-packed inverse-opal photonic crystals. Adv. Mater. 18(8), 1063 (2006).
31. Graugnard, E., King, J.S., Gaillot, D.P., and Summers, C.J.: Sacrificial-layer atomic layer deposition for fabrication of non-close-packed inverse-opal photonic crystals. Adv. Funct. Mater. 16(9), 1187 (2006).
32. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., and van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405(6785), 437 (2000).
33. Poppe, T.: Sintering of highly porous silica-particle samples: Analogues of early Solar-system aggregates. Icarus 164(1), 139 (2003).
34. Masuda, H., Higashitani, K., and Yoshida, H.: Powder Technology Handbook (CRC Press, Boca Raton, 2006).
35. Castro, R.H.R. and Benthem, K.v.: Sintering Mechanisms of Convention Nanodensification and Field Assisted Processes (Springer, Verlag Berlin Heidelberg, 2013).
36. German, R.M.: Sintering: From Empirical Observations to Scientific Principles (Elsevier, Oxford, 2014).
37. Fang, Z.Z.: Sintering of Advanced Materials Fundamentals and Processes (Woodhead Publishing, Philadelphia, 2010).
38. Zhang, D., Zhang, L., Lee, D., Cheng, X., and Feng, G.: Suppressing unstable deformation of nanocolloidal crystals with atomic layer deposition. Mater. Sci. Eng., A 639, 514 (2015).
39. Zhang, D., Zhang, L., Lee, D., Cheng, X., and Feng, G.: Reinforcing nanocolloidal crystals by tuning interparticle bonding via atomic layer deposition. Acta Mater. 95, 216 (2015).
40. Gallego-Gomez, F., Blanco, A., and Lopez, C.: Exploration and exploitation of water in colloidal crystals. Adv. Mater. 27(17), 2686 (2015).
41. Miguez, H., Tetreault, N., Hatton, B., Yang, S.M., Perovic, D., and Ozin, G.A.: Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide. Chem. Commun. (22), 2736 (2002).
42. Li, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., Song, Y., and Jiang, L.: Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem. 21(6), 1730 (2011).
43. Wang, J., Wen, Y., Ge, H., Sun, Z., Zheng, Y., Song, Y., and Jiang, L.: Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys. 207(6), 596 (2006).
44. Míguez, H., Yang, S.M., Tétreault, N., and Ozin, G.A.: Oriented free-standing three-dimensional silicon inverted colloidal photonic crystal microfibers. Adv. Mater. 14(24), 1805 (2002).
45. Galisteo, J.F., García-Santamaría, F., Golmayo, D., Juárez, B.H., López, C., and Palacios, E.: Self-assembly approach to optical metamaterials. J. Opt. A: Pure Appl. Opt. 7(2), S244 (2005).
46. Sechrist, Z.A., Schwartz, B.T., Lee, J.H., McCormick, J.A., Piestun, R., Park, W., and George, S.M.: Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem. Mater. 18(15), 3562 (2006).
47. Moon, J.H. and Yang, S.: Chemical aspects of three-dimensional photonic crystals. Chem. Rev. 110(1), 547 (2009).
48. George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).
49. Leskel, M. and Ritala, M.: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem., Int. Ed. 42, 5548 (2003).
50. Kim, H., Lee, H.B.R., and Maeng, W.J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517(8), 2563 (2009).
51. Leskelä, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409(1), 138 (2002).
52. Scharrer, M., Wu, X., Yamilov, A., Cao, H., and Chang, R.P.H.: Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition. Appl. Phys. Lett. 86(15), 151113 (2005).
53. Blanco, A., Gallego-Gómez, F., and López, C.: Nanoscale morphology of water in silica colloidal crystals. J. Phys. Chem. Lett. 4(7), 1136 (2013).
54. Gallego-Gómez, F., Blanco, A., Canalejas-Tejero, V., and López, C.: Water-dependent photonic bandgap in silica artificial opals. Small 7(13), 1838 (2011).
55. Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).
56. Wang, L., Wan, Y., Li, Y., Cai, Z., Li, H-L., Zhao, X.S., and Li, Q.: Binary colloidal crystals fabricated with a horizontal deposition method. Langmuir 25(12), 6753 (2009).
57. Yan, Q., Zhao, X.S., and Zhou, Z.: Fabrication of colloidal crystal heterostructures using a horizontal deposition method. J. Cryst. Growth 288(1), 205 (2006).
58. Yan, Q., Zhou, Z., and Zhao, X.S.: Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir 21(7), 3158 (2005).
59. Olive, W.C. and Pharr, G.M.: An Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
60. Hay, J. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26(06), 727 (2011).
61. Han, S.M., Saha, R., and Nix, W.D.: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).
62. Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67(17), 172101 (2003).
63. Gallego-Gómez, F., Blanco, A., and López, C.: In Situ optical study of water sorption in silica colloidal crystals. J. Phys. Chem. C 116(34), 18222 (2012).
64. Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., Mattarelli, M., Montagna, M., Moser, E., Nunzi Conti, G., Pelli, S., Righini, G.C., Clara Gonçalves, M., and Almeida, R.M.: Design of photonic structures by sol–gel-derived silica nanospheres. J. Non-Cryst. Solids 353(5–7), 674 (2007).
65. Garcia-Santamaria, F., Miguez, H., Ibisate, M., Meseguer, F., and Lopez, C.: Refractive index properties of calcined silica submicrometer spheres. Langmuir 18, 1942 (2002).
66. Chrobak, D., Nordlund, K., and Nowak, R.: Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98(4), 045502 (2007).
67. Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42(4), 642 (2001).
68. Tirumkudulu, M.S. and Russel, W.B.: Cracking in drying latex films. Langmuir 21(11), 4938 (2005).
69. Dufresne, E.R., Corwin, E.I., Greenblatt, N.A., Ashmore, J., Wang, D.Y., Dinsmore, A.D., Cheng, J.X., Xie, X.S., Hutchinson, J.W., and Weitz, D.A.: Flow and fracture in drying nanoparticle suspensions. Phys. Rev. Lett. 91(22), 224501 (2003).
70. Singh, K.B. and Tirumkudulu, M.S.: Cracking in drying colloidal films. Phys. Rev. Lett. 98(21), 218302 (2007).
71. Jagota, A. and Hui, C.Y.: Mechanics of sintering thin films—II. Cracking due to self-stress. Mech. Mater. 11(3), 221 (1991).
72. Grabner, L.: Spectroscopic technique for the measurement of residual stress in sintered Al2O3 . J. Appl. Phys. 49(2), 580 (1978).
73. Lawn, B.R., Evans, A.G., and Marshall, D.B.: Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63(9–10), 574 (1980).
74. Lee, J.H., Gao, Y.F., Johanns, K.E., and Pharr, G.M.: Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater. 60(15), 5448 (2012).
75. Volinsky, A.A., Vella, J.B., and Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2), 201 (2003).
76. Pharr, G.M.: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253(1–2), 151 (1998).
77. Scholz, T., Schneider, G.A., Muñoz-Saldaña, J., and Swain, M.V.: Fracture toughness from submicron derived indentation cracks. Appl. Phys. Lett. 84(16), 3055 (2004).
78. Hardinga, D.S., Olivera, W.C., and Pharra, G.M.: Cracking during nanoindentation and its use in the measurement of fracture toughness. Mater. Res. Soc. Symp. Proc. 356, 663 (1995).
79. Anunmana, C., Anusavice, K.J., and Mecholsky, J.J.: Residual stress in glass: Indentation crack and fractography approaches. Dent. Mater. 25(11), 1453 (2009).
80. Zeng, K. and Rowcliffe, D.: Experimental measurement of residual stress field around sharp indentation in glass. J. Am. Ceram. Soc. 77(2), 524 (1994).

Keywords

Type Description Title
PDF
Supplementary materials

Zhang Supplementary Material
Zhang Supplementary Material

 PDF (1.5 MB)
1.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed