Skip to main content Accessibility help

A comparative study on the evolution of microstructure and hardness during monotonic and cyclic high pressure torsion of CoCuFeMnNi high entropy alloy

  • Reshma Sonkusare (a1), Nimish Khandelwal (a2), Pradipta Ghosh (a3), Krishanu Biswas (a1) and Nilesh Prakash Gurao (a1)...


Discs of CoCuFeMnNi face centered cubic high entropy alloy were subjected to monotonic and cyclic high pressure torsion (HPT) in a single step and multiple steps of 5° forward and reverse cycle for 100° and 360° twist, respectively, under 5 GPa pressure at room temperature. It was observed that the 100° cyclic HPT sample shows the highest hardness at the periphery comparable to 360° monotonic HPT sample, while the cyclic 360° HPT sample shows the lowest hardness throughout the sample. High hardness of 100° cyclic HPT sample can be attributed to finer grain size and unstable dislocation substructure by continuous change in strain path from initial compression to forward–reverse torsion, while stable dislocation structure corresponding to shear contributes to increase in hardness from 100° to 360° for monotonic HPT sample. The unstable dislocation substructure promotes grain boundary migration–enabled grain growth leading to low hardness throughout the 360° cyclic HPT sample.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from sever plastic deformation. Prog. Mater. Sci. 45, 103189 (2000).
2.Valiev, R.Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511516 (2004).
3.Langdon, T.G.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 70357059 (2013).
4.Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881981 (2006).
5.Zhu, Y.T. and Lowe, T.C.: Observations and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Eng., A 291, 4653 (2000).
6.Biswas, S. and Suwas, S.: Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4Mn by a modified multi-axial forging process. Scr. Mater. 66, 8992 (2012).
7.Kumar, P., Gurao, N.P., Haldar, A., and Suwas, S.: Texture and microstructural evolution in pearlitic steel during triaxial compression. Metall. Mater. Trans. A 43, 20432055 (2012).
8.Pippan, R., Scheriau, S., Taylor, A., Hatok, M., Hohenwarter, A., and Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40, 319343 (2010).
9.Hohenwarter, A., Bachmaier, A., Gludovatz, B., Scheriau, S., and Pippan, R.: Technical parameters affecting grain refinement by high pressure torsion. Int. J. Mater. Res. 100, 16531661 (2009).
10.Wetscher, F. and Pippan, R.: Cyclic high pressure torsion of nickel and Armco iron. Philos. Mag. 86, 58675883 (2006).
11.Kawasaki, M. and Langdon, T.G.: The significance of strain reversals during processing by high pressure torsion. Mater. Sci. Eng., A 498, 341348 (2008).
12.Zhang, J., Starnik, M.J., Gao, N., and Zhou, W.: Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion. Mater. Sci. Eng., A 528, 20932099 (2011).
13.Zhang, J., Gao, N., and Starnik, M.J.: Microstructure development and hardening during high pressure torsion of commercially pure aluminium: Strain reversal experiments and a dislocation based model. Mater. Sci. Eng. A528, 25812591 (2011).
14.Wetscher, F. and Pippan, R.: Hardening and softening behaviour of cyclic high pressure torsion. Metall. Mater. Trans. A 40, 32583263 (2009).
15.Kawasaki, M., Ahn, B., and Langdon, T.G.: Significance of strain reversals in a two-phase alloy processed by high pressure torsion. Mater. Sci. Eng. A527, 70087016 (2010).
16.Ma, X., Li, F., Mao, X., Yuan, S., and Wang, J.: Effect of strain reversal on microstructure and mechanical properties of Ti–6Al–4V alloy under cyclic torsion deformation. Procedia Eng. 201, 14691474 (2017).
17.Sharma, A.S., Yadav, S., Biswas, K., and Basu, B.: High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng., R 131, 142 (2018).
18.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 9097 (2015).
19.Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, Basel, Switzerland, 2015).
20.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).
21.Mridha, S., Samal, S., Khan, P.Y., and Biswas, K.: Processing and consolidation of nanocrystalline Cu–Zn–Ti–Fe–Cr high-entropy alloys via mechanical alloying. Metall. Mater. Trans. A 44, 45324541 (2013).
22.Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299313 (2017).
23.Mohanty, S., Gurao, N.P., and Biswas, K.: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng., A 617, 211218 (2014).
24.Mishra, A.K., Samal, S., and Biswas, K.: Solidification behaviour of Ti-Cu-Fe-Co-Ni high entropy alloys. Trans. Indian Inst. Met. 65, 725730 (2012).
25.Samal, S., Mohanty, S., Mishra, A.K., Biswas, K., Govind, R.: Mechanical behaviour of novel suction-cast Ti-Cu-Fe-Co-Ni high entropy alloys. Mater. Sci. Forum 790, 503508 (2014).
26.Mishra, R.S., Kumar, N., and Komarasamy, M.: Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys. Mater. Sci. Technol. 31, 12591263 (2015).
27.Komarasamy, M., Kumar, N., Mishra, R.S., and Liaw, P.K.: Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Mater. Sci. Eng., A 654, 256263 (2016).
28.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258268 (2015).
29.Yuan, H., Tsai, M-H., Sha, G., Liu, F., Horita, Z., Zhu, Y., and Wang, J.T.: Atomic-scale homogenization in a fcc-based high-entropy alloy via severe plastic deformation. J. Alloys Compd. 686, 1523 (2016).
30.Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high pressure torsion and thermal annealing. Mater. Lett. 151, 126129 (2015).
31.Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Effect of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283291 (2016).
32.Shahmir, H., Nili-Ahmadabadi, M., Shaifee, A., Andrzejczuk, M., and Langdon, L.G.: Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A725, 196206 (2018).
33.Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W-M., Joo, S-H., Lee, B-J., Podolskiy, A., Tikhonovsky, M., and Kim, H.S.: Microstructure and mechanical properties of high entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high pressure torsion at 77 K and 300 K. Sci. Rep. 8, 11074 (2018).
34.Maity, T., Prashanth, K.G., Balci, O., Kim, J.T., Schoberl, T., Wang, Z., and Eckert, J.: Influence of severe straining and strain rate on the evolution of dislocation substructures during micro-nano indentation in high entropy lamellar eutectics. Int. J. Plast. 109, 121136 (2018).
35.Tazuddin, , Biswas, K., and Gurao, N.P.: Deciphering micro-mechanisms of plastic deformation in a novel single phase fcc based MnFeCoNiCu high entropy alloy using crystallographic texture. Mater. Sci. Eng., A 657, 224233 (2016).
36.Tazuddin, , Gurao, N.P., and Biswas, K.: In the quest of single phase multi-component multiprincipal high entropy alloy. J. Alloys Compd. 697, 434442 (2017).
37.Sonkusare, R., Divya-Janini, P., Gurao, N.P., Sarkar, S., Sen, S., Pradeep, K.G., and Biswas, K.: Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 269278 (2018).
38.Agarwal, R., Sonkusare, R., Jha, S.R., Gurao, N.P., Biswas, K., and Nayan, N.: Understanding the deformation behaviour of CoCuFeMnNi high entropy alloy by investigating mechanical properties of binary, ternary and quaternary alloy subsets. Mater. Des. 157, 539550 (2018).
39.Zhong, Y., Yin, F., Sakaguchi, T., Nagai, K., and Yang, K.: Dislocation structure evolution and characterization in the compression deformed Mn–Cu alloy. Acta Mater. 55 27472756 (2007).
40.Suwas, S. and Gurao, N.P.: Development of microstructures and textures by cross rolling. In Comprehensive Materials Processing, Vol. 3, Hashmi, M. S. J., editor-in-chief (Elsevier Ltd., Amsterdam, 2014); pp. 81106.
41.Gurao, N.P., Sethuraman, S., and Suwas, S.: Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel. Mater. Sci. Eng. A528, 77397750 (2011).
42.Ungar, T., Toth, L.S., Illy, J., and Kovacs, L.: Dislocation structure and work hardening in polycrystalline OFHC copper rods deformed by torsion and tension. Acta Metall. 34, 12571267 (1986).
43.Correa, E.C.S., Aguilar, M.T.P., and Cetlin, P.R.: The effect of tension/torsion strain path changes on the work hardening of Cu–Zn brass. J. Mater. Process. Technol. 124, 384388 (2002).
44.Wilson, D.V. and Bate, P.S.: Influence of cell walls and grain boundaries on transient responses of an IF steel to changes in strain path. Acta Metall. Mater. 42, 10991111 (1994).
45.Canova, G.R., Kocks, U.F., and Jonas, J.J.: Theory of torsion texture development. Acta Metall. 32, 211226 (1984).
46.Hallberg, H., Wallin, M., and Ristinmaa, M.: Modeling of continuous dynamic recrystallization in commercial-purity aluminium. Mater. Sci. Eng. A572, 11261134 (2010).
47.Bacca, M., Hayhurst, D.R., and McMeeking, R.M.: Continuous dynamic recrystallization during severe plastic deformation. Mech. Mater. 90, 148156 (2015).
48.Renk, O., Hohenwarter, A., Wurster, S., and Pippan, R.: Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 77, 401410 (2014).
49.Yu, T., Hansen, N., Huang, X., and Godfrey, A.: Observation of a new mechanism balancing hardening and softening in metals. Mater. Res. Lett. 2, 160165 (2014).
50.Kapp, M.W., Renk, O., Leitner, T., Ghosh, P., Yang, B., and Pippan, R.: Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion. J. Mater. Res. 32, 43174326 (2017).
51.Hughes, D.A., Charzan, D.C., Liu, Q., and Hansen, N.: Scaling of misorientation angle distributions. Phys. Rev. Lett. 81, 46644667 (1998).
52.Field, D.P., Trivedi, P.B., and Wright, S.I.: Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy 103, 3339 (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed