Skip to main content Accessibility help
×
Home

Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies

  • H. Attar (a1), M. Bönisch (a2), M. Calin (a2), L.C. Zhang (a3), K. Zhuravleva (a4), A. Funk (a4), S. Scudino (a5), C. Yang (a6) and J. Eckert (a7)...

Abstract

This study presents results of selective laser melting (SLM), powder metallurgy (PM), and casting technologies applied for producing Ti–TiB composites from Ti–TiB2 powder. Diffraction patterns and microstructural investigations reveal that chemical reaction occurred between Ti and TiB2 during all the three processes, leading to the formation of Ti–TiB composites. The ultimate compressive strength of SLM-processed and cast samples are 1421 and 1434 MPa, respectively, whereas the ultimate compressive strengths of PM-processed 25%, 29%, and 36% porous samples are 510, 414, and 310 MPa, respectively. The Young's moduli of porous composite samples are 70, 45, and 23 GPa for 25%, 29%, and 36% porosity levels, respectively, and are lower than those of SLM-processed (145 GPa) and cast (142 GPa) samples. Fracture analysis of the SLM-processed and cast samples shows shear fracture and microcracks across the samples, whereas failure of porous samples occurs due to porosities and weak bonds among particles.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: lczhangimr@gmail.com, l.zhang@ecu.edu.au

References

Hide All
1. Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater. Sci. 54(3), 397 (2009).
2. Qin, Y., Geng, L., and Ni, D.: Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J. Mater. Sci. 46(14), 4980 (2011).
3. Cui, Z.D., Zhu, S.L., Man, H.C., and Yang, X.J.: Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology. Surf. Coat. Technol. 190(2), 309 (2005).
4. Lu, W., Zhang, D., Zhang, X., Wu, R., Sakata, T., and Mori, H.: Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys Compd. 327(1), 248 (2001).
5. Fromentin, J.F., Debray, K., Le Petitcorps, Y., Martin, E., and Quenisset, J.M.: Interfacial zone design in titanium-matrix composites reinforced by SiC filaments. Compos. Sci. Technol. 56(7), 767 (1996).
6. Jeong, H.W., Kim, S.J., Hyun, Y.T., and Lee, Y.T.: Densification and compressive strength of in-situ processed Ti/TiB composites by powder metallurgy. Met. Mater. Int. 8(1), 25 (2002).
7. Chandran, K.S.R., Panda, K.B., and Sahay, S.S.: TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56(5), 42 (2004).
8. Gorsse, S., Petitcorps, Y.L., Matar, S., and Rebillat, F.: Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng., A 340(1), 80 (2003).
9. Gofrey, T.M.T., Goodwin, P.S., and Ward-Close, C.M.: Titanium particulate metal matrix composites–Reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2(3), 85 (2000).
10. Wei, S., Zhang, Z.H., Wang, F.C., Shen, X.B., Cai, H.N., Lee, S.K., and Wang, L.: Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater. Sci. Eng., A 560, 249 (2013).
11. Morsi, K. and Patel, V.V.: Processing and properties of titanium–titanium boride (TiBw) matrix composites—A review. J. Mater. Sci. 42(6), 2037 (2007).
12. Tjong, S.C. and Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29(3), 49 (2000).
13. Bolzoni, L., Esteban, P.G., Ruiz-Navas, E.M., and Gordo, E.: Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J. Mech. Behav. Biomed. Mater. 15, 33 (2012).
14. Zhu, J., Kamiya, A., Yamada, T., Watazu, A., Shi, W., and Naganuma, K.: Effect of silicon addition on microstructure and mechanical properties of cast titanium alloys. Mater. Trans. 42(2), 336 (2001).
15. Campoli, G., Borleffs, M.S., Yavari, S.A., Wauthle, R., Weinans, H., and Zadpoor, A.A.: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater. Des. 49, 957 (2013).
16. Levy, G.N., Schindel, R., and Kruth, J.P.: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann.-Manuf. Technol. 52(2), 589 (2003).
17. Attar, H., Calin, M., Zhang, L.C., Scudino, S., and Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng., A 593, 170 (2014).
18. Zhang, L.C., Klemm, D., Eckert, J., Hao, Y.L., and Sercombe, T.B.: Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 65(1), 21 (2011).
19. Zhang, L.C. and Sercombe, T.B.: Selective laser melting of low-modulus biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of laser point distance. Key Eng. Mater. 520, 226 (2012).
20. Attar, H., Bönisch, M., Calin, M., Zhang, L.C., Scudino, S., and Eckert, J.: Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties. Acta Mater. 76, 13 (2014).
21. Gu, D., Hagedorn, Y.C., Meiners, W., Wissenbach, K., and Poprawe, R.: Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): Densification, growth mechanism and wear behavior. Compos. Sci. Technol. 71, 1612 (2011).
22. Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Löber, L., Wang, Z., Chaubey, A.K., Kühn, U., and Eckert, J.: Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).
23. Thijs, L., Kempen, K., , K.J.P.and Van Humbeeck, J.: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61, 1809 (2013).
24. Wang, X.J., Zhang, L.C., Fang, M.H., and Sercombe, T.B.: The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater. Sci. Eng., A 597, 370 (2014).
25. Feng, H., Jia, D., and Zhou, Y.: Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Composites Part A 36(5), 558 (2005).
26. Galvan, D., Ocelik, V., Pei, Y., Kooi, B.J., De Hosson, J.T.M., and Ramous, E.: Microstructure and properties of TiB/Ti-6Al-4V coatings produced with laser treatments. J. Mater. Eng. Perform. 13(4), 406 (2004).
27. Heinl, P., Müller, L., Körner, C., Singer, R.F., and Müller, F.A.: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4(5), 1536 (2008).
28. Kobashi, M., Kuze, K., and Kanetake, N.: Cell structure control of porous titanium composite synthesized by combustion reaction. Adv. Eng. Mater. 8(9), 836 (2006).
29. Chen, Y.J., Feng, B., Zhu, Y.P., Weng, J., Wang, J.X., and Lu, X.: Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 63(30), 2659 (2009).
30. Gu, D., Hagedorn, Y.-C., Meiners, W., Meng, G., Batista, R.J.S., Wissenbach, K., and Poprawe, R.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849 (2012).
31. Zhang, L.C., Calin, M., Paturaud, F., and Eckert, J.: Deformation-induced grain refinement in body-centered cubic Co-Fe alloys upon room temperature compression. Mater. Sci. Eng., A 527, 5796 (2010).
32. Sahay, S.S., Ravichandran, K.S., Atri, R., Chen, B., and Rubin, J.: Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J. Mater. Res. 14(11), 4214 (1999).
33. Huang, L.J., Yang, F.Y., Hu, H.T., Rong, X.D., Geng, L., and Wu, L.Z.: TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater. Des. 51, 421 (2013).
34. Aich, S. and Chandran, K.S.R.: TiB whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties. Metall. Mater. Trans. A. 33(11), 3489 (2002).
35. Lu, W.J., Xiao, L., Geng, K., Qin, J.N., and Zhang, D.: Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique. Mater. Charact. 59(7), 912 (2008).
36. Panda, K.B. and Chandran, K.S.R.: Titanium-titanium boride (Ti-TiB) functionally graded materials through reaction sintering: Synthesis, microstructure, and properties. Metall. Mater. Trans. A 34(9), 1993 (2003).
37. Panda, K.B. and Chandran, K.S.R.: Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties. Metall. Mater. Trans. A 34(6), 1371 (2003).
38. Calin, M., Gebert, A., Ghinea, A.C., Gostin, P.F., Abdi, S., Mickel, C., and Eckert, J.: Designing biocompatible Ti-based metallic glasses for implant applications. Mater. Sci. Eng., C 33(2), 875 (2013).
39. He, G., Löser, W., and Eckert, J.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51(17), 5223 (2003).
40. Elias, C.N., Lima, J.H.C., Valiev, R., and Meyers, M.A.: Biomedical applications of titanium and its alloys. JOM 60(3), 46 (2008).
41. Long, F.W., Jiang, Q.W., Xiao, L., and Li, X.W.: Compressive deformation behaviors of coarse- and ultrafine-grained pure titanium at different temperatures: A comparative study. Mater. Trans. 52(8), 1617 (2011).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed